• Length:
    6 Weeks
  • Effort:
    8–10 hours per week
  • Price:

    FREE
    Add a Verified Certificate for $150 USD

  • Institution
  • Subject:
  • Level:
    Advanced
  • Language:
    English
  • Video Transcript:
    English

Associated Programs:

Prerequisites

You should be familiar with an undergraduate level, or have a background, in mathematics and statistics. Previous experience with a procedural programming language is beneficial (e.g. Python, C, Java, Visual Basic).

About this course

Skip About this course

This course provides you with the skills to build a predictive model from the ground up, using Python.

You will learn the full lifecycle of building the model. First, you'll understand the data discovery process and discover how to make connections between the predicting and predicted variables. You will also learn about key data transformation and preparation issues, which form the backdrop to an introduction in Python for data analytics.

Through the analysis of real-life data, you will also develop an approach to implement simple linear and logistic regression models. These real-life examples include assessments on customer credit card behavior and case studies on sales volume forecasting.

This course is the first in the MicroMasters program and will prepare you for modeling classification and regression problems with statistical and machine learning methods.

What you'll learn

Skip What you'll learn

In this course you will:

  • Understand the predictive analytics process
  • Gather and prepare data for predictive modelling
  • Clean datasets to prevent data quality issues in your models
  • Implement linear and logistic refression models using real-life data

Week 1: Introduction to Predictive Modelling
Week 2: Python andPredictive Modelling
Week 3: Variables and the Modelling Process
Week 4: Transformation and Preparation of Data
Week 5: Data Quality Problems and Other Anomalies
Week 6: Regression and Case Study

Meet your instructors

Dr Johannes De Smedt
Dixons Carphone Lecturer in Business Analytics
The University of Edinburgh
Sofia Varypati
Course tutor
The University of Edinburgh

Pursue a Verified Certificate to highlight the knowledge and skills you gain $150.00

View a PDF of a sample edX certificate
  • Official and Verified

    Receive an instructor-signed certificate with the institution's logo to verify your achievement and increase your job prospects

  • Easily Shareable

    Add the certificate to your CV or resume, or post it directly on LinkedIn

  • Proven Motivator

    Give yourself an additional incentive to complete the course

  • Support our Mission

    EdX, a non-profit, relies on verified certificates to help fund free education for everyone globally

Learner testimonials

"So far I have learned about the foundation of the predictive analytics process and how to formulate simple predictive models using Python. It has already helped me to be more involved in the Risk Model development project in my role at the bank." - Valdy Mustafa, Indonesia

Frequently asked questions

What type of activities will I complete on the course?
This course foregrounds self-directed and active ways of learning: reading, coding in Python, knowledge check quizzes, and peer discussion. In addition, the course features videos that demonstrate relevant predictive analysis techniques and concepts.

What software will I be required to use?
All coding activities on this course will be hosted on Vocareum. You will be able to access this free software directly within the edX platform. There is no requirement to purchase further software in order to complete this course.

What do I need to complete the course?
For successful completion of this course, you will need access to a computer or mobile device and a reliable internet connection.

What is the University of Edinburgh Accessibility Guidance?

The University of Edinburgh is committed to providing online information and services accessible to all. Edx provide an accessibility statement which is available via the footer of all edx.org pages and includes an 'Accessibility Feedback' form which allows Learners to register feedback directly with the edx. Courses created by the University of Edinburgh contain an Accessibility Statement which addresses equality of access to information and servicesandis available via the 'Support' page.

Who can take this course?

Unfortunately, learners from one or more of the following countries or regions will not be able to register for this course: Iran, Cuba and the Crimea region of Ukraine. While edX has sought licenses from the U.S. Office of Foreign Assets Control (OFAC) to offer our courses to learners in these countries and regions, the licenses we have received are not broad enough to allow us to offer this course in all locations. EdX truly regrets that U.S. sanctions prevent us from offering all of our courses to everyone, no matter where they live.