• Length:
    3 Weeks
  • Effort:
    5–6 hours per week
  • Price:

    FREE
    Add a Verified Certificate for $199 USD

  • Institution
  • Subject:
  • Level:
    Intermediate
  • Language:
    English
  • Video Transcript:
    English
  • Course Type:
    Self-paced on your time

About this course

Skip About this course

In the first part of this course you will explore methods to compute an approximate solution to an inconsistent system of equations that have no solutions. Our overall approach is to center our algorithms on the concept of distance. To this end, you will first tackle the ideas of distance and orthogonality in a vector space. You will then apply orthogonality to identify the point within a subspace that is nearest to a point outside of it. This has a central role in the understanding of solutions to inconsistent systems. By taking the subspace to be the column space of a matrix, you will develop a method for producing approximate (“least-squares”) solutions for inconsistent systems.

You will then explore another application of orthogonal projections: creating a matrix factorization widely used in practical applications of linear algebra. The remaining sections examine some of the many least-squares problems that arise in applications, including the least squares procedure with more general polynomials and functions.

This course then turns to symmetric matrices. arise more often in applications, in one way or another, than any other major class of matrices. You will construct the diagonalization of a symmetric matrix, which gives a basis for the remainder of the course.

What you'll learn

Skip What you'll learn

Upon completion of this course, learners will be able to:

  • Compute dot product of two vectors, length of a vector, distance between points, and angles between vectors
  • Apply theorems related to orthogonal complements, and their relationships to Row and Null
    space, to characterize vectors and linear systems
  • Compute orthogonal projections and distances to express a vector as a linear combination of orthogonal vectors, construct vector approximations using projections, and characterize bases for subspaces, and construct orthonormal bases
  • Apply the iterative Gram Schmidt Process, and the QR decomposition, to construct an orthogonal basis
  • Construct the QR factorization of a matrix
  • Characterize properties of a matrix using its QR decomposition
  • Compute general solutions and least squares errors to least squares problems using the normal
    equations and the QR decomposition
  • Apply least-squares and multiple regression to construct a linear model from a set of data
    points
  • Apply least-squares to fit polynomials and other curves to data
  • Construct an orthogonal diagonalization of a symmetric matrix
  • Construct a spectral decomposition of a matrix

Meet your instructors

Greg Mayer
Academic Professional in the School of Mathematics
Georgia Tech (Georgia Institute of Technology)

Pursue a Verified Certificate to highlight the knowledge and skills you gain
$199 USD

View a PDF of a sample edX certificate
  • Official and Verified

    Receive an instructor-signed certificate with the institution's logo to verify your achievement and increase your job prospects

  • Easily Shareable

    Add the certificate to your CV or resume, or post it directly on LinkedIn

  • Proven Motivator

    Give yourself an additional incentive to complete the course

  • Support our Mission

    EdX, a non-profit, relies on verified certificates to help fund free education for everyone globally