• Length:
    5 Weeks
  • Effort:
    4–6 hours per week
  • Price:

    FREE
    Add a Verified Certificate for $99 USD

  • Institution
  • Subject:
  • Level:
    Advanced
  • Language:
    English
  • Video Transcript:
    English

Prerequisites

Basic knowledge on
  • electrodynamics and optics
  • solid state physics
  • high mathematical analysis and linear algebra

About this course

Skip About this course
Gain a wide view on the physics of light interaction with metal nanostructures. In this course, you will learn about the whole diversity of unique effects appearing at the junction of nanotechnology, subwavelength optics, quantum mechanics, and solid state physics. You will find out how giant field enhancement near metallic nanostructures can be used for detecting single biomolecule, and whether it is possible to build a nanometer scale laser.

Within the framework of the course, we will discuss in details the fundamental principles of light interaction with plasma oscillations in solid state. By passing our course you will: 
  • step-by-step learn the field of plasmonics starting from optical properties of metals to the latest applications of plasmonic nanostructures
  • get the minimal theoretical background, which will be illustrated and supported by the describing experimental techniques and discussing the cutting edge scientific results.
  • get a hands-on experience on how to describe the plasmons in various nanostructures such as single metallic nanoparticles, nanoparticle oligomers and periodic arrays, plasmonic waveguides and wires.
  • In the final part of the course, you will have an overview of application of plasmonics in chemical biosensing, nanolasing, light trapping, and optomechanical control. 

The course is divided into five sections:
  • Electromagnetic properties of metals
  • Surface plasmon-polaritons
  • Localized surface plasmon resonances
  • Bulk plasmon-polaritons
  • Applications of plasmonics 

This course is aimed for graduate and undergraduate students who are majoring in physics and engineering science related to optics. As well as researchers who want to gain or deepen their knowledge in the field of modern photonics. This course can give a boost to your educational or academic career, and potentially will stimulate you to conduct your own research in this field.

What you'll learn

Skip What you'll learn
  • Basic knowledge and skills on plasmonics, which allow you to do research in this area
  • Knowledge about state-of-the art achievements and concepts in plasmonics
  • Basic techniques and methods for description of optical properties of plasmonic nanostructures
  • Knowledge on experimental methods and techniques for analysis of plasmonic nanostructures
Week 1: Optical properties of metals
  • Maxwell’s equations, dielectric function of metals, Drude-Lorentz approximaion, plasma frequency of metals, skin depth, and absorption in metals

Week 2: Bulk plasmon polaritons
  • Field distribution and dispersion of surface-plasmon  polaritons, methods of excitation, plasmonic waveguide, spoof plasmons 
  • Longitudinal and transversal electromagnetic wave in plasma, bulk plasmons, spatial dispersion, waves in anisotropic plasma
 
Week 3: Surface plasmon-polaritons
  • Particles in electromagnetic field, Mie theory, scattering and absorption cross-sections, localized plasmon resonance of a spherical metal nanoparticle
  • Basic fabrication and optical characterization methods
 
Week 4: Localized plasmons in nanostructures
  • Spheroid and elongated nanoparticles, core-shell structures, void plasmons
  • Higher order resonances harmonics beyond quasistatic approximation, basics of Mie theory

Week 5: Applications of plasmonics
  • Plasmonic dimer, oligomer and chain structures for field enhancement and energy transport; two-dimensional arrays of plasmonic particles for reflection and refraction control;
  • Radiation enhancement and quenching via plasmonic structures, Surface-enhanced Raman scattering, plasmonic waveguide for quantum cascade lasers, solar energy harvesting with plasmonic structures, plasmonic structures for optomechanics

Meet your instructors

Andrey Bogdanov
Associate Professor of the Nanophotonics and Metamaterials Department
ITMO University
Mihail Petrov
Researcher at the Nanophotonics and Metamaterials Department
ITMO University

Pursue a Verified Certificate to highlight the knowledge and skills you gain $99.00

View a PDF of a sample edX certificate
  • Official and Verified

    Receive an instructor-signed certificate with the institution's logo to verify your achievement and increase your job prospects

  • Easily Shareable

    Add the certificate to your CV or resume, or post it directly on LinkedIn

  • Proven Motivator

    Give yourself an additional incentive to complete the course

  • Support our Mission

    EdX, a non-profit, relies on verified certificates to help fund free education for everyone globally

Who can take this course?

Unfortunately, learners from one or more of the following countries or regions will not be able to register for this course: Iran, Cuba and the Crimea region of Ukraine. While edX has sought licenses from the U.S. Office of Foreign Assets Control (OFAC) to offer our courses to learners in these countries and regions, the licenses we have received are not broad enough to allow us to offer this course in all locations. EdX truly regrets that U.S. sanctions prevent us from offering all of our courses to everyone, no matter where they live.