• Length:
    4 Weeks
  • Effort:
    10–12 hours per week
  • Price:

    FREE
    Add a Verified Certificate for $49 USD

  • Institution
  • Subject:
  • Level:
    Advanced
  • Language:
    English
  • Video Transcript:
    English

Prerequisites

A two-semester sequence in Quantum Mechanics at the level of MIT 8.05 and 8.06.

About this course

In this physics course, you will learn about the spontaneous and stimulated light force and friction force in molasses and optical standing waves. You will also study light forces in the dressed atom picture. The course will discuss the techniques of magneto-optical traps and sub-Doppler and sub-recoil cooling.

This course is a part of a series of courses to introduce concepts and current frontiers of atomic physics, and to prepare you for cutting-edge research:

At MIT, the content of the five courses makes the second of a two-semester sequence (8.421 and 8.422) for graduate students interested in Atomic, Molecular, and Optical Physics. This sequence is required for Ph.D. students doing research in this field.

Completing the series allows you to pursue advanced study and research in cold atoms, as well as specialized topics in condensed matter physics. In these five courses you will learn about the following topics:

  • quantum states and dynamics of photons
  • photon-atom interactions: basics and semiclassical approximations
  • open system dynamics
  • optical Bloch equations
  • applications and limits of the optical Bloch equations
  • dressed atoms
  • light force
  • laser cooling
  • cold atoms
  • evaporative cooling
  • Bose-Einstein condensation
  • quantum algorithms and protocols
  • ion traps and magnetic traps

What you'll learn

  • Spontaneous and stimulated light force.
  • Friction force in molasses and optical standing waves.
  • Light forces in the dressed atom picture.
  • Magneto-optical traps.
  • Sub-Doppler and sub-recoil cooling.

Meet your instructors

Isaac Chuang
Professor of Electrical Engineering and Computer Science, and Professor of Physics
Massachusetts Institute of Technology
David E. Pritchard
Cecil and Ida Green Professor of Physics
MIT
Wolfgang Ketterle
John D. MacArthur Professor of Physics
MIT

Pursue a Verified Certificate to highlight the knowledge and skills you gain $49.00

View a PDF of a sample edX certificate
  • Official and Verified

    Receive an instructor-signed certificate with the institution's logo to verify your achievement and increase your job prospects

  • Easily Shareable

    Add the certificate to your CV or resume, or post it directly on LinkedIn

  • Proven Motivator

    Give yourself an additional incentive to complete the course

  • Support our Mission

    EdX, a non-profit, relies on verified certificates to help fund free education for everyone globally