• Length:
    10 Weeks
  • Effort:
    8–10 hours per week
  • Price:

    FREE
    Add a Verified Certificate for $150 USD

  • Institution
  • Subject:
  • Level:
    Intermediate
  • Language:
    English
  • Video Transcript:
    English
  • Associated Programs:

  • MicroMasters® Program

Prerequisites

Candidates interested in pursuing the MicroMasters program in Big Data are advised to complete Programming for Data Science and Computational Thinking and Big Data before undertaking this course.

About this course

Organizations now have access to massive amounts of data and it’s influencing the way they operate. They are realizing in order to be successful they must leverage their data to make effective business decisions.

In this course, part of the Big Data MicroMasters program, you will learn how big data is driving organisational change and the key challenges organizations face when trying to analyse massive data sets.

You will learn fundamental techniques, such as data mining and stream processing. You will also learn how to design and implement PageRank algorithms using MapReduce, a programming paradigm that allows for massive scalability across hundreds or thousands of servers in a Hadoop cluster. You will learn how big data has improved web search and how online advertising systems work.

By the end of this course, you will have a better understanding of the various applications of big data methods in industry and research.

What you'll learn

  • Knowledge and application of MapReduce
  • Understanding the rate of occurrences of events in big data
  • How to design algorithms for stream processing and counting of frequent elements in Big Data
  • Understand and design PageRank algorithms
  • Understand underlying random walk algorithms
Section 1: The basics of working with big data
Understand the four V’s of Big Data (Volume, Velocity, and Variety); Build models for data; Understand the occurrence of rare events in random data. 

Section 2: Web and social networks
Understand characteristics of the web and social networks; Model social networks; Apply algorithms for community detection in networks. 

Section 3: Clustering big data
Clustering social networks; Apply hierarchical clustering; Apply k-means clustering. 

Section 4: Google web search
Understand the concept of PageRank; Implement the basic; PageRank algorithm for strongly connected graphs; Implement PageRank with taxation for graphs that are not strongly connected. 

Section 5: Parallel and distributed computing using MapReduce
Understand the architecture for massive distributed and parallel computing; Apply MapReduce using Hadoop; Compute PageRank using MapReduce. 

Section 6: Computing similar documents in big data
Measure importance of words in a collection of documents; Measure similarity of sets and documents; Apply local sensitivity hashing to compute similar documents. 

Section 7: Products frequently bought together in stores
Understand the importance of frequent item sets; Design association rules; Implement the A-priori algorithm. 

Section 8: Movie and music recommendations
Understand the differences of recommendation systems; Design content-based recommendation systems; Design collaborative filtering recommendation systems. 

Section 9: Google's AdWordsTM System
Understand the AdWords System; Analyse online algorithms in terms of competitive ratio; Use online matching to solve the AdWords problem. 

Section 10: Mining rapidly arriving data streams
Understand types of queries for data streams; Analyse sampling methods for data streams; Count distinct elements in data streams; Filter data streams.

Meet your instructors

Frank Neumann
Professor, School of Computer Science
University of Adelaide
Vahid Roostapour
PhD Student, School of Computer Science
University of Adelaide
Aneta Neumann
Postgraduate Researcher, School of Computer Science
University of Adelaide
Wanru (Kelly) Gao
Lecturer, School of Computer Science
University of Adelaide

Pursue a Verified Certificate to highlight the knowledge and skills you gain $150.00

View a PDF of a sample edX certificate
  • Official and Verified

    Receive an instructor-signed certificate with the institution's logo to verify your achievement and increase your job prospects

  • Easily Shareable

    Add the certificate to your CV or resume, or post it directly on LinkedIn

  • Proven Motivator

    Give yourself an additional incentive to complete the course

  • Support our Mission

    EdX, a non-profit, relies on verified certificates to help fund free education for everyone globally

Frequently asked questions

Question: This course is self-paced, but is there a course end date? 
Answer: Yes. The first course release started on May 15, 2017 and ends on December 1, 2018. 
The new release of the course starts on December 1, 2018 and ends on December 1, 2020. 

Who can take this course?

Unfortunately, learners from one or more of the following countries or regions will not be able to register for this course: Iran, Cuba and the Crimea region of Ukraine. While edX has sought licenses from the U.S. Office of Foreign Assets Control (OFAC) to offer our courses to learners in these countries and regions, the licenses we have received are not broad enough to allow us to offer this course in all locations. EdX truly regrets that U.S. sanctions prevent us from offering all of our courses to everyone, no matter where they live.