• Length:
    7 Weeks
  • Effort:
    6–12 hours per week
  • Price:

    FREE
    Add a Verified Certificate for $49 USD

  • Institution
  • Subject:
  • Level:
    Intermediate
  • Language:
    English
  • Video Transcript:
    English
  • Course Type:
    Instructor-led on a course schedule

Prerequisites

Real analysis, multivariate analysis.

About this course

Skip About this course

"Complex analysis" is a practice-oriented course. Both tracks of the course (audit and verified) are supplemented with carefully chosen problems aimed at assisting the understanding of lecture materials. Each problem, in turn, is supplemented with a detailed solution.

The major concepts of complex analysis have a strong geometric flavor. Therefore, whenever possible we use geometrical interpretation of principal ideas to invoke the spatial intuition of the learner.

The majority of the topics of the course (e.g. Taylor's and Laurent's power series, Cauchy's and residue theorems) are given with immediate examples to sharpen the learner's grasp. The focal point of complex analysis is of course, the art of contour integration in the complex plane.

Building on the concept of analytic function we successively introduce the complex contour integral and main integral theorems. Gradually developing this idea we finish the course with integration along contours spanning several Riemann sheets.

The topics covered:

1. Complex numbers, complex algebra, complex derivative, analytic function, simple conformal mappings.

2. Cauchy theorem. Taylor and Laurent power series.

3. Residue theory. Contour integration. Computation of real integrals with the help of residues. Cauchy principal value integral.

4. Multivalued functions: branch points and branch cuts. The computation of regular branches.

5. Methods of analytic continuation. Analytic continuation with the help of contour deformation. Riemann surfaces of analytic functions.

6. Integrands with multivalued functions.

The course includes two tracks.

The audit track allows the learner to access all lecture materials from the course including many problems.

The "verified certificate" track allows the learner to

1. access additional non-trivial problems from the course.

2. access the detailed solutions to all the problems inside the course at the end of each week.

3. get an official certificate from the university on completion of the course.

What you'll learn

Skip What you'll learn

The students will learn:

1. Major methods and theorems of complex analysis.

2. How to Laurent expand functions near singularities.

3. How to compute complex and real integrals with the help of Cauchy and residue theorem.

4. How to extract regular branches of multivalued functions and compute their values and residues.

5. How to perform analytical continuation of multivalued functions with different methods.

6. How to build a Riemann surface with bare hands and with the help of Wolfram Mathematica.

7. How to compute integrals containing multivalued functions.

8. How to compute integrals of analytic functions along contours spanning several Riemann sheets.

Lecture 1

  • Representations of complex numbers.
  • Complex derivative. Cauchy-Riemann conditions
  • Simple conformal mappings.

Lecture 2

  • Cauchy integral theorem.
  • Taylor and Laurent series in the complex plane
  • Types of singularities

Lecture 3

  • Integration with residues
  • Integration with Jordan's lemma
  • Integration in principal value

Lecture 4

  • Extraction of the regular branch of the power and log-type function.

Lecture 5

  • Analytical continuation. Interesting examples.
  • Riemann surfaces.

Lecture 6

  • Integrals with power and log-type integrand.
  • Integrals along contours lying on different Riemann sheets.

Meet your instructors

Yaroslav Rodionov
Associate Professor
National University of Science and Technology MISIS
Konstantin Tikhonov
Researcher, Theoretical Physics
Landau Institute

Pursue a Verified Certificate to highlight the knowledge and skills you gain
$49 USD

View a PDF of a sample edX certificate
  • Official and Verified

    Receive an instructor-signed certificate with the institution's logo to verify your achievement and increase your job prospects

  • Easily Shareable

    Add the certificate to your CV or resume, or post it directly on LinkedIn

  • Proven Motivator

    Give yourself an additional incentive to complete the course

  • Support our Mission

    edX, a non-profit, relies on verified certificates to help fund free education for everyone globally

Learner testimonials

"This course is excellent throughout. The videos are done well, with a special format where the text is rendered as the speaker writes."

"I had a great time with the problems. They have a strong geometric flavour, you must find your way along Riemann surfaces' twists and turns, your path or contour all the way stretching and bending around branch points and poles."

"The problem sets are excellent and challenging. The material in this course will be quite useful in theoretical physics."

Who can take this course?

Unfortunately, learners from one or more of the following countries or regions will not be able to register for this course: Iran, Cuba and the Crimea region of Ukraine. While edX has sought licenses from the U.S. Office of Foreign Assets Control (OFAC) to offer our courses to learners in these countries and regions, the licenses we have received are not broad enough to allow us to offer this course in all locations. edX truly regrets that U.S. sanctions prevent us from offering all of our courses to everyone, no matter where they live.