Skip to main content

Fundamentals of Biomedical Imaging: Ultrasounds, X-ray, positron emission tomography (PET) and applications

Learn how principles of basic science are integrated into major biomedical imaging modalities and the different techniques used, such as X-ray computed tomography (CT), ultrasounds and positron emission tomography (PET).

Fundamentals of Biomedical Imaging: Ultrasounds, X-ray, positron emission tomography (PET) and applications

There is one session available:

12,779 already enrolled! After a course session ends, it will be archived.
Starts Oct 27
Estimated 7 weeks
4–5 hours per week
Self-paced
Progress at your own speed
Free
Optional upgrade available

About this course

Skip About this course

This physics course covers the physical principles of major in vivo bio-imaging modalities and the different imaging techniques.

After a short study of ultrasound imaging, you will learn about the different X-ray imaging techniques. The understanding of the interaction of X-rays with tissue will lead to the study of three different techniques:

  • Computed Tomography (CT)
  • Emission Tomography
  • Positron Emission Tomography (PET)

This course shows how existing physical principles transcend into bio-imaging and establish an important link into life sciences, illustrating the contributions physics can make to life sciences. Practical examples will be shown to illustrate the respective imaging modality, its use, premise and limitations, and biological safety will be touched upon.

During this course, you will develop a good understanding of the mechanisms leading to tissue contrast of the bio-imaging modalities covered in this course, including the inner workings of the scanner and how they define the range of possible biomedical applications. You will be able to judge which imaging modality is adequate for specific life science needs and to understand the limits and promises of each modality.

To learn more about biomedical imaging, join us in the second part of this course Biomedical Imaging: Magnetic Resonance Imaging (MRI).

At a glance

  • Institution: EPFLx
  • Subject: Engineering
  • Level: Advanced
  • Prerequisites:

    It is recommended to have followed introductory physics at the Bachelor level and to be familiar with the concept of Fourier transformation.

  • Language: English
  • Video Transcript: English

What you'll learn

Skip What you'll learn
  • Understand the main imaging concepts that characterize the quality of imaging techniques for Signal (SNR) and Contrast (CNR).
  • Understand the essential principles of ultrasound, X-ray imaging (CT), SPECT, PET.
  • For each of the above techniques, be aware of the factors limiting the image quality.
  • Describe/analyse typical applications.
  • Recognize the imaging technique used to produce a given image.
  1. Introduction to the course, importance and essential elements of bio-imaging.
  2. Ultrasound imaging; ionizing radiation and its generation.
  3. X-ray imaging - when the photon bumps into living tissue, radioprotection primer.
  4. Computed tomography - from projection to image.
  5. Emission tomography - what are tracers and how to trace them in your body, x-ray detection, scintillation principle.
  6. Positron emission tomography (PET) - imaging anti-matter annihilation.
  7. Tracer kinetics - modeling of imaging data.

About the instructors

Interested in this course for your business or team?

Train your employees in the most in-demand topics, with edX for Business.