Skip to main content

Fundamentals of Integrated Photonics

A gateway course introducing learners to silicon-based photonics: survey of optical materials design, overview of devices and optical link design, summary of application-specific drivers for integrated photonics systems.

Fundamentals of Integrated Photonics
This course is archived
Future dates to be announced
Estimated 4 weeks
5–6 hours per week
Progress at your own speed
Optional upgrade available

About this course

Skip About this course

Are you an engineering student or early- to mid-career engineer, in a specialty area that is rapidly adopting optical and photonics-based materials or device designs, to create innovative systems solutions for modern high tech applications?

Are you seeking a comprehensive and yet succinct introduction to silicon-based integrated photonics? Do you want to promptly acquire a common lexicon and technical perspective to help you begin to envision new application-specific systems components, that can leverage the unique optical functions of integrated photonics?

Welcome to Fundamentals of Integrated Photonics: a self-paced, modular gateway course that upskills you in the foundational principles of silicon-based materials and devices, and in integration design strategies for planar photonics links.

Silicon-based integrated photonics is a modern engineering technology that caps thirty-plus years of research and development, into hybridizing the information-relay capacity of optical fiber telecommunications, with the processing infrastructure of microelectronics. While the early days of silicon photonics presumed this synergy to enable ever-higher computational performance for microprocessors, the last two decades have begun to open up transformative new opportunities for it in cloud computing datacom, microwave and millimeter-through terahertz wireless, chemical and biological sensing, augmented imaging, and quantum computing area applications—in addition to next-generation telecom.

This course introduces you to the prerequisite optical design insights and skills to evaluate a communications or sensing optical link. You’ll be introduced to

  • emerging applications area drivers and criteria to assess the endorsement of integrated photonics solutions;
  • electromagnetism modeling of silicon photonic materials (silicon, silicon oxide, silicon nitride, germanium) and optical waveguide confinement;
  • a toolkit of integration principles and an express survey of key passive and active device components; and
  • performance metrics for an optical link.

Completion of the course equips you with a professional engineer-level competency to participate actively in team-consensus design of application-specific integrated photonics solutions. Incipient or veteran engineers in electrical, mechanical, and chemical engineering-affiliated industries such as telecom, microelectronics, wireless, gas and medical sensing, or optical ranging will benefit from this course as a primer or refresher on modern photonics. Course completion also prepares you for more advanced online courses or specialty conference short courses in application-area systems design, passive or active device modeling, or photonic circuit simulation and layout (see edX course Photonic Integrated Circuits 1).

Image courtesy S.F. Preble, Rochester Institute of Technology. AIM Photonics Academy education chip layout designed by Rochester Institute of Technology, Boston University, and University of Rochester.

At a glance

  • Institution: MITx
  • Subject: Engineering
  • Level: Intermediate
  • Prerequisites:

    An introductory background in semiconductor materials is recommended. Basic proficiency in linear algebra and differential equations. Very basic proficiency in computer programming.

  • Language: English
  • Video Transcript: English

What you'll learn

Skip What you'll learn
  • 21st century application systems driver for photonics adoption and technology innovation opportunities.
  • Materials properties and processing of silicon or silicon nitride photonic devices; linear versus non-linear photonics materials.
  • The one-dimensional Helmholtz equation and Finite Difference Method; polarization dependent two-dimensional optical confinement principles.
  • A toolkit of photonics integration principles.
  • Dispersion versus loss-limited optical link design.

About the instructors

Frequently Asked Questions

Skip Frequently Asked Questions

How long does this course run?
Fundamentals of Integrated Photonics is a self-paced course representing, on average, 20-25 hours of video lectures, assessment questions, and a Matlab-based short design project. At a pace of 5-6 work hours per week, you will typically complete this course within a four week period. The course content is structured as four distinct topical units; you may plan to complete one unit, each week.

Do I need to be a Matlab coding expert to take this course? Do I need to buy Matlab?
You do not need to have expert proficiency in Matlab, nor do you have to purchase Matlab. The Matlab exercise in this course is designed to guide you very carefully through the code-scripting process. You will not have to create an entire Matlab code. The exercise will rely on your prior generic experience with code-scripting (utilize For loops, create vector or matrix variables), and require you to write 1-3 lines of code in the Matlab format. An online tutorial link from MathWorks will be available to give you a short primer on Matlab scripts. The Matlab exercise is only available to Verified learners, who will have online access to Matlab via the course page.

Is there a textbook for this course?
There is no textbook assigned for this course.

Who can take this course?

Unfortunately, learners residing in one or more of the following countries or regions will not be able to register for this course: Iran, Cuba and the Crimea region of Ukraine. While edX has sought licenses from the U.S. Office of Foreign Assets Control (OFAC) to offer our courses to learners in these countries and regions, the licenses we have received are not broad enough to allow us to offer this course in all locations. edX truly regrets that U.S. sanctions prevent us from offering all of our courses to everyone, no matter where they live.

Interested in this course for your business or team?

Train your employees in the most in-demand topics, with edX for Business.