• Length:
    5 Weeks
  • Effort:
    2–4 hours per week
  • Price:

    FREE
    Add a Verified Certificate for $149 USD

  • Institution
  • Subject:
  • Level:
    Introductory
  • Language:
    English
  • Video Transcript:
    English

Prerequisites

High school math, basic knowledge of calculus

About this course

Skip About this course

Want to learn how to analyze the huge amounts of data? In this course you will learn modern methods of machine learning to help you choose the right methods to analyze your data and interpret the results correctly.

This course is an introduction to machine learning. It will cover the modern methods of statistics and machine learning as well as mathematical prerequisites for them. We will discuss the methods used in classification and clustering problems. You will learn different regression methods.

Various examples and different software applications are considered in the course. You will get not only the theoretical prerequisites, but also practical hints on how to work with your data in MS Azure.

What you'll learn

Skip What you'll learn
  • Introduction to machine learning and mathematical prerequisites
  • Regression types (linear, polynomial, multi variable regression)
  • Classification methods: Logistic regression, Naïve Bayes and K-nearest neighbours
  • Clustering methods: hierarchical and k-means clustering

Week 1: Introduction to machine learning and mathematical prerequisites. The concepts of machine and statistical learning are introduced. We discuss the main branches of ML such as supervised, unsupervised and reinforcement learning, give specific examples of problems to be solved by the described approaches. Besides, we show that ML is not as powerful as one can think. Finally, we remind you of some basic concepts of mathematics used in further lectures.

Week 2: Regression (linear, polynomial, multivariable regression). Regression problem is one of the main problems in supervised learning. We start with the heuristic approach trying to solve a very practical problem and come to rigorous mathematical construction of the simple linear regression model. We go further and describe statistical properties of the model: confidence intervals for the model's parameters, hypothesis testing of linear dependence. Finally, we come to a so-called multivariable linear and polynomial regressions and show some examples and applications.

Week 3: Logistic regression. The second branch of supervised learning is a classification problem. We deal with a two-class logistic regression and emphasise that it is not a regression at all. Then why is it called so? It's construction is closely connected with linear regression described in the 2nd lecture. We remind you a maximum likelihood estimation method and its applications to logistic regression. Finally, we discuss some applications of the logistic regression to a football game predictions and describe ROC analysis or a quality testing approach for the described model.

Week 4: Naïve Bayes and K-nearest neighbours. In this lecture we continue with classification problem. We introduce a so-called naive Bayes approach to classification widely used in e-mail spam recognition until 2010. Then we come to a multi-class classification using K-nearest neighbours method. What are the metrics that we will use? How does a particular metric influences the result? What is K and how do you choose it solving a particular problem? These are the questions that are rigorously discussed in the lecture.

Week 5: Clustering methods: hierarchical and k-means clustering. Clusterization problem is at the heart of unsupervised learning. We have a lot of data and nothing else: we don't know the amount of classes, similarities in objects, we know almost nothing. We show how to establish some order in the given chaotic data using hierarchical clustering method and k-means approach. How to establish the initial clusters, what metric to choose, what actually means "close and far" objects? These questions are discussed in the lecture.

Meet your instructors

Anton Boitsev
Assistant Professor at the Higher School of Digital Culture
ITMO University
Aleksei Romanov
Assistant Professor at the Higher School of Digital Culture
ITMO University
Dmitry Volchek
Assistant Professor at the Higher School of Digital Culture
ITMO University
Elena Mikhailova
Director of Higher School of Digital Culture
ITMO University

Pursue a Verified Certificate to highlight the knowledge and skills you gain
$149.00

View a PDF of a sample edX certificate
  • Official and Verified

    Receive an instructor-signed certificate with the institution's logo to verify your achievement and increase your job prospects

  • Easily Shareable

    Add the certificate to your CV or resume, or post it directly on LinkedIn

  • Proven Motivator

    Give yourself an additional incentive to complete the course

  • Support our Mission

    EdX, a non-profit, relies on verified certificates to help fund free education for everyone globally

Who can take this course?

Unfortunately, learners from one or more of the following countries or regions will not be able to register for this course: Iran, Cuba and the Crimea region of Ukraine. While edX has sought licenses from the U.S. Office of Foreign Assets Control (OFAC) to offer our courses to learners in these countries and regions, the licenses we have received are not broad enough to allow us to offer this course in all locations. EdX truly regrets that U.S. sanctions prevent us from offering all of our courses to everyone, no matter where they live.