• Length:
    18 Weeks
  • Effort:
    12–14 hours per week
  • Price:

    Add a Verified Certificate for $149 USD

  • Institution
  • Subject:
  • Level:
  • Language:
  • Video Transcript:
  • Course Type:
    Instructor-led on a course schedule


Some knowledge of wave mechanics at the level of an introductory undergraduate course, 8.04x. Proficiency in calculus and some knowledge of linear algebra.

About this course

Skip About this course

This course offers a sophisticated view of quantum mechanics and its proper mathematical foundation. Completing the course will give you the tools needed to do research in quantum mechanics and to understand many current developments.

The first part reviews the basics of wave mechanics and introduces the variational principle. It then moves on to develop the technology of spin one-half states and spin operators. The last part of the module gives an in-depth look into linear algebra to establish the mathematical foundation necessary to do quantum mechanics. The module concludes by developing the bra-ket notation of Dirac.

The second part covers Heisenberg’s uncertainty principle and the concept of compatible operators. It continues to develop the Heisenberg and the Schrödinger pictures of quantum mechanics. The module also covers the coherent and squeezed states of the harmonic oscillator. It concludes with two state systems and their applications to NMR and masers.

The third part introduces the concept of tensor product states to discuss entanglement and Bell inequalities. The module also covers angular momentum and the representations of angular momentum. This is used to understand the spectrum of central potentials and to introduce hidden symmetries. It concludes with the subject of addition of angular momentum and an algebraic approach to the hydrogen atom spectrum.

This course follows MIT’s on campus 8.05, the second semester of the three-course sequence on undergraduate quantum mechanics, and will be equally rigorous. 8.05 is a signature course in MIT's physics program and a keystone in the education of physics majors.

Before starting, you will need some basic familiarity with quantum mechanics. You must have seen the Schrodinger equation and studied its solutions for the square well potential, the harmonic oscillator, and the hydrogen atom. You may have learned this by self-study or by taking an introductory one-quarter or one-semester course on the subject. You must be proficient in calculus and have some knowledge of linear algebra.

Completing the course provides the necessary foundation to pursue advanced study or research at the graduate level in areas related to quantum mechanics.

To master this course you will likely need a time investment of at least 12 hours a week.

What you'll learn

Skip What you'll learn
  • Basics of Wave Mechanics.
  • The Variational Principle.
  • Spin one-half and Spin Operators.
  • Vector spaces and linear operators.
  • Dirac’s Bra-ket notation.
  • Uncertainty Principle and compatible operators.
  • The Schrodinger and Heisenberg pictures of quantum mechanics.
  • Coherent and Squeezed States.
  • Two state systems and applications to NMR.
  • Entanglement and Bell’s inequality. Teleportation
  • Angular momentum and central potentials
  • Addition of angular momentum

Meet your instructors

Barton Zwiebach
Professor of Physics
Massachusetts Institute of Technology

Pursue a Verified Certificate to highlight the knowledge and skills you gain
$149 USD

View a PDF of a sample edX certificate
  • Official and Verified

    Receive an instructor-signed certificate with the institution's logo to verify your achievement and increase your job prospects

  • Easily Shareable

    Add the certificate to your CV or resume, or post it directly on LinkedIn

  • Proven Motivator

    Give yourself an additional incentive to complete the course

  • Support our Mission

    edX, a non-profit, relies on verified certificates to help fund free education for everyone globally

Learner testimonials

“I’ve thought long and hard to come up with a better MOOC than this one (I’ve completed 25 of these things over the past 2 years) and can’t do it. 8.05x is #1 and I suspect will stay that way for some time to come.”

“Being an engineering student from India trying to shift to Physics, I am often faced with the requirement to study topics on my own. Very often this has led me to feel inadequate. 8.05x was the perfect opportunity for me to both gain knowledge and evaluate my understanding on a high quality international platform. It has really exceeded my expectations. Now, at the end of fifteen weeks, I feel more confident and hopefully I am more knowledgeable.”

Who can take this course?

Unfortunately, learners from one or more of the following countries or regions will not be able to register for this course: Iran, Cuba and the Crimea region of Ukraine. While edX has sought licenses from the U.S. Office of Foreign Assets Control (OFAC) to offer our courses to learners in these countries and regions, the licenses we have received are not broad enough to allow us to offer this course in all locations. edX truly regrets that U.S. sanctions prevent us from offering all of our courses to everyone, no matter where they live.