Skip to main content

Математические и инструментальные методы машинного обучения

Курс посвящён изучению основных методов машинного обучения, используемых для факторного, кластерного и классификационного анализов. В ходе обучения, слушатели смогут освоить основные подходы и получить навыки решения практических задач поиска закономерностей в сырых данных.

There is one session available:

After a course session ends, it will be archived.
Starts Nov 30
Estimated 10 weeks
10–20 hours per week
Self-paced
Progress at your own speed
Free
Optional upgrade available

About this course

Skip About this course

Обработка и анализ больших данных представляет собой новую практическую задачу, требующую навыков работы с современным инструментарием. В настоящее время данные называют «нефтью 21 века», они накапливаются в корпоративных и государственных информационных системах, социальных сетях, веб-блогах и сайтах и потенциально являются ценным ресурсом для извлечения новых знаний, инсайтов для научных исследований, повышения эффективности и конкурентоспособности предприятий. Методы интеллектуального анализа больших данных, таким образом, представляют собой тот необходимый инструмент для высвобождения этого потенциала.
Курс «Математические и инструментальные методы машинного обучения» входит в число базовых при подготовке современных экономистов-математиков на уровне магистров. Изучение дисциплины позволит студентам получить и развивать навыки анализа и диагностики проблем экономики, современных методов их решения, а также ознакомиться с современной спецификой исследования операций в зарубежных и отечественных организациях.
Целями и задачами курса являются: формирование фундаментальных общеэкономических и естественнонаучных знаний; освоение математических и инструментальных методов машинного обучения; использование современных информационно-коммуникационных технологий в профессиональной деятельности; закрепление профессиональных навыков в области прогнозирования основных социально-экономических показателей деятельности предприятия, отрасли, региона и экономики в целом.
Компетенции по решению задач в анализе данных с помощью методов машинного обучения, будут получены студентами после прохождения курса «Математические и инструментальные методы машинного обучения». Изучение дисциплины позволит выработать навыки постановки и решения проблем развития организации, развить творческое мышление специалистов в области системного анализа и бизнес-моделирования, выработать умение решать управленческие проблемы в конкретной экономической ситуации.

At a glance

  • Language: Русский
  • Video Transcript: Русский

What you'll learn

Skip What you'll learn
  • математические и инструментальные методы машинного обучения;
  • использование современных информационно-коммуникационных технологий в профессиональной деятельности;
  • закрепление профессиональных навыков в области прогнозирования основных социально-экономических показателей деятельности предприятия, отрасли, региона и экономики в целом.

Неделя 1. Задачи и методологии анализа данных
Урок 1. Введение в задачи анализа данных. Описание стандартов CRISP-DM, KDD, SEMMA. Основные понятия и методы анализа данных.
Урок 2. Среда интеллектуального анализа данных RapidMiner.

Неделя 2. Подготовка данных
Урок 3. Очистка, и обогащение данных.
Урок 4. Метод главных компонент. Матрица нагрузок и матрица счетов. График собственных значений. Критерий Кайзера. Вращение методом Варимакс. Интерпретация результатов факторного анализа.

Неделя 3. Визуализация данных
Урок 5. Визуализация данных. Понятие и основные задачи визуализации.
Урок 6. Подходы к визуализации: геометрический, древовидный.

Неделя 4. Понятие описательных статистик
Урок 7. Подходы к визуализации: геометрический, древовидный.
Понятие описательных статистик. Вычисление основных показателей положения и вариации. Построение частотных полигонов и гистограмм.

Неделя 5. Анализ связей
Урок 8. Корреляционный анализ/Понятие корреляционной связи. Коэффициент корреляции Пирсона. Ранговые коэффициенты. Коэффициенты корреляции для дихотомических и номинальных переменных.
Урок 9. Регрессионный анализ/Простая линейная регрессия. Проверка значимости уравнения линейной регрессии. Оценка качества уравнения линейной регрессии. Коэффициент детерминации. Доверительный интервал линейной регрессии.

Неделя 6. Кластеризация
Урок 10. Постановка задачи кластеризации/Понятие кластера. Обзор прикладных задач с использованием методов кластеризации. Обзор основных понятий и методов кластерного анализа.
Урок 11. Иерархические и итеративные методы кластеризации/Иерархическая агломеративная кластеризация. Дендрограммы. Дивизимные методы кластеризации. Метод МакКуина (к-средних).

Неделя 7. Мягкая и жёсткая кластеризация
Урок 12. Критерии качества кластеризации.

Неделя 8. Классификация
Урок 13. Постановка задачи классификации/Задача классификации с учителем. Понятие и свойства класса. Обзор основных методов классификации. Байесовская наивная классификация/Понятие байесовского классификатора.
Урок 14. Деревья решений в задачах классификации/Понятие деревьев решений. Примеры.

Неделя 9. Методы поиска ассоциативных правил
Урок 15. Понятие правил ассоциации. Метод Apriori. Метод FP-Growth. Примеры.
Урок 16. Понятие шаблона последовательных событий. Метод Apriori. Метод GSP.

Неделя 10. Интеллектуальный анализ текста
Урок 17. Токенизация. Векторизация. Регулярные выражения.
Урок 18. Стемминг. Лемматизация. Удаление стоп-слов. Анализ тональности.

About the instructors

Who can take this course?

Unfortunately, learners residing in one or more of the following countries or regions will not be able to register for this course: Iran, Cuba and the Crimea region of Ukraine. While edX has sought licenses from the U.S. Office of Foreign Assets Control (OFAC) to offer our courses to learners in these countries and regions, the licenses we have received are not broad enough to allow us to offer this course in all locations. edX truly regrets that U.S. sanctions prevent us from offering all of our courses to everyone, no matter where they live.

Interested in this course for your business or team?

Train your employees in the most in-demand topics, with edX for Business.