Skip to main content

Microstructural Evolution of Materials Part 3: Surfaces & Surface-Driven Reactions

Discover the principles of Surfaces & Surface-Driven Reactions that explain materials science phenomena.

...
Microstructural Evolution of Materials Part 3: Surfaces & Surface-Driven Reactions

There is one session available:

204 already enrolled!
After a course session ends, it will be archivedOpens in a new tab.
Starts Jun 24
Ends Nov 29

Microstructural Evolution of Materials Part 3: Surfaces & Surface-Driven Reactions

Discover the principles of Surfaces & Surface-Driven Reactions that explain materials science phenomena.

Microstructural Evolution of Materials Part 3: Surfaces & Surface-Driven Reactions
Estimated 4 weeks
8–12 hours per week
Self-paced
Progress at your own speed
Free
Optional upgrade available

There is one session available:

After a course session ends, it will be archivedOpens in a new tab.
Starts Jun 24
Ends Nov 29

About this course

Skip About this course

This module is Part 3 of a four-part series on the Microstructural Evolution in Materials. Taken together, these four modules provide similar content to the MIT Course 3.022: Microstructural Evolution of Materials.

This series introduces various kinetic phenomena in various classes of materials. The course explains how materials develop different microstructure based on different processing techniques, and it relates these microstructures to the properties of the material.

Microstructural Evolution of Materials is intended for engineering and science students and professionals with an interest in materials statistics, kinetics, and microstructural transformations.

Part 1 of the course will introduce important concepts in statistical mechanics that are especially relevant to materials scientists. Topics include solid solutions, the canonical ensemble and heat capacity.

Part 2 of the course focuses on point defect evolution, including diffusion, substitutional diffusion, ionic defects, and ionic conductivity.

Part 3 of the course discusses surfaces and surface-driven reactions. Topics include surface energy, faceted and non-faceted growth, and growth and ripening.

Part 4 of the course focuses on phase transformations, including nucleation and growth, precipitate growth, interface stability, and glass transition.

At a glance

  • Institution: MITx
  • Subject: Engineering
  • Level: Advanced
  • Prerequisites:
    • Parts 1 and 2 of Microstructure of Materials (3.022.1x, 3.022.2x)
    • University-level Calculus
    • Structure of Materials (Ideally, 3.012Sx: Structure of Materials
    • Thermodynamics (ideally, 3.012Tx: Thermodynamics of Materials)
  • Language: English
  • Video Transcript: English

What you'll learn

Skip What you'll learn

At the end of this course, you will be able to:

  • Predict surface energy along various crystalline planes
  • Understand how surface energy can be exploited in nanoparticle synthesis
  • Explain the Ostwald ripening process in solid solutions

Surface Energy:

  • Introduction: Surface Science
  • New Surface Creation
  • Surface Energy for High-Index Planes
  • Surface and Chemical Potential: Spherical Particles
  • Surface Effects in Nanosystems

Faceted & Non-Faceted Growth:

  • Atomically Smooth vs. Atomically Rough Surfaces
  • The Jackson Model of Crystal Growth
  • The Jackson Factor
  • Morphology of Crystals Grown from Melt

Grain Growth:

  • Introduction to Growth and Ripening
  • 2-D Grain Growth
  • Grain Boundary Motion: Interface Curvature
  • Grain Boundary Motion: Laplace Pressure
  • Grain Growth Kinetics

Ostwald Ripening

  • Ostwald Ripening Kinetics
  • Ostwald Ripening: Mean Field Approximation
  • Ostwald Ripening: Particle Coarsening
  • Ostwald Ripening: Lifshitz-Slyozov-Wagner Theory
  • Practical Implications of Grain Growth and Ostwald Ripening

About the instructors

Who can take this course?

Unfortunately, learners residing in one or more of the following countries or regions will not be able to register for this course: Iran, Cuba and the Crimea region of Ukraine. While edX has sought licenses from the U.S. Office of Foreign Assets Control (OFAC) to offer our courses to learners in these countries and regions, the licenses we have received are not broad enough to allow us to offer this course in all locations. edX truly regrets that U.S. sanctions prevent us from offering all of our courses to everyone, no matter where they live.

Interested in this course for your business or team?

Train your employees in the most in-demand topics, with edX for Business.