• Length:
    8 Weeks
  • Effort:
    2–4 hours per week
  • Price:

    FREE
    Add a Verified Certificate for $70 USD

  • Institution
  • Subject:
  • Level:
    Intermediate
  • Language:
    English
  • Video Transcripts:
    English, 中文

Prerequisites

  • Basic high-school chemistry and knowledge of the periodic table
  • Basic algebra
  • Basic calculus

About this course

As a topic of study, semiconductor devices offer a unique challenge due to the complex mathematics involved. In this course, we take a more intuitive approach to explore the underlying concepts. Eschewing mathematics, we use engaging animations to help you visualize the working principles of many common semiconductor devices.

Whether you are completely new to the subject or an experienced engineer, this course will give you a different perspective and a new way to look at the behaviors of semiconductor devices.

Reducing the reliance of equations does not mean the depth of the material is sacrificed. In fact, the course provides even more in-depth explanations of key concepts. We shift the focus from quantitatively evaluating the behavior of semiconductor devices to intuitively visualizing the semiconductor device actions.

In addition, the course offers a wide array of content - from basic PN junctions to modern nano-electronic circuit and systems. Besides covering the existing technologies, the course also explores the development of the industry into the future.

What you'll learn

  • How to describe the motion of carriers in a semiconductor material
  • Ways to illustrate the operational principles of some common electronic devices including PN Junction Diode, Schottky Diode, Photo Diodes, Solar Cells, LED and Bipolar Junction Transistor
  • How to identify the most important parameters to adjust for meeting certain design specifications
  • How to construct the circuit models of some common electronic devices
  • Communication in the language of semiconductor 
Week 1: Intrinsic semiconductor materials
Introduction to the energy band diagram of a crystal and calculating the carrier concentration in the material. 

Week 2: Doping and PN junction formation
The effect of doping and the formation of PN junctions. 

Week 3: Current-voltage characteristics of PN junction diodes
Current-voltage characteristics and detailed carrier actions in a PN junction diode. 

Week 4: Real PN junction characteristics, its model and design
The characteristics of real PN junction diodes, the charge and capacitance models, and the design strategy.

Week 5: PN junction optical properties and metal-semiconductor contacts 
The optical responses of the PN junction; the working principles of optical detection, solar cells and LEDs; and the metal-semiconductor contacts.

Week 6: Basic operation of Bipolar Junction Transistor
Introduction to bipolar junction transistors, I-V characteristic and non-ideal effects.

Week 7: Real Bipolar Junction Transistor structures, switching characteristics and model 
Switching characteristics of the Bipolar Junction Transistor, it circuit model and design strategy.

Week 8: Final Exam

Meet your instructors

Mansun Chan
Chair Professor, Department of Electronic and Computer Engineering
The Hong Kong University of Science and Technology

Pursue a Verified Certificate to highlight the knowledge and skills you gain $70.00

View a PDF of a sample edX certificate
  • Official and Verified

    Receive an instructor-signed certificate with the institution's logo to verify your achievement and increase your job prospects

  • Easily Shareable

    Add the certificate to your CV or resume, or post it directly on LinkedIn

  • Proven Motivator

    Give yourself an additional incentive to complete the course

  • Support our Mission

    EdX, a non-profit, relies on verified certificates to help fund free education for everyone globally