Skip to main content

PurdueX: Steel Beam and Plate Girder Design

Learn fundamental concepts and applications of welded built-up steel plate girders including proportioning, flexural and shear strength, and local and global stability.

8 weeks
2–3 hours per week
Instructor-paced
Instructor-led on a course schedule
This course is archived
Future dates to be announced

About this course

Skip About this course

Built-up plate girders are used extensively in bridges and as transfer girders in buildings.

This course will cover the design of built-up plate girders with an emphasis on proportioning, shear and flexural strength, and local/global stability.

Students will leave this course with an in-depth knowledge of relevant limit states and failure modes as well as a familiarity with the AISC360 (American Institute of Steel Construction) provisions for plate girder design. This course is best suited for students with an undergraduate civil engineering background including a basic steel design course and will build on these concepts.

Students will learn from a top researcher with over 20 years of experience in the field. Professor Varma focuses on teaching through exploring example problems and applications of fundamental concepts, encouraging his students to both understand the fundamental principles of plate girder behavior and be able to apply these concepts in realistic design scenarios.

This course is available to practicing engineers for 1.5 CEUs for learners completing the course on the verified track.

At a glance

  • Institution: PurdueX
  • Subject: Engineering
  • Level: Advanced
  • Prerequisites:
    • Recommend completing an undergraduate steel design course.
  • Language: English
  • Video Transcript: English
  • Associated skills:Girders, Welding, Steel Design, Civil Engineering, Flexural Strength, Failure Causes, Shear (Sheet Metal), Shear Strength

What you'll learn

Skip What you'll learn
  • Understand basic buckling theory including beam and plate buckling behavior.
  • Proportion plate girders appropriately for strength and stability requirements.
  • Evaluate the flexural capacity of I-shaped plate girders regardless of component slenderness.
  • Describe the different shear force transfer mechanisms in plate girders including the shear strength of webs with and without tension field action and effects of transverse stiffeners.
  • Evaluate the shear capacity of an I-shaped plate girder and design transverse stiffeners as appropriate.

Week 1: Steel as a Material and Beam Buckling Review

Introduce the course and review important steel behavior and beam buckling concepts.

Week 2: Proportioning Plate Girders and Local Buckling

Discuss initial sizing of plate girders and local buckling concerns.

Week 3: Plate Girder Flexural Capacity (AISC 360 F2 and F3)

Introduce AISC provisions and discuss in detail plate girder design following F2 (doubly symmetric, compact sections) and F3 (doubly symmetric I-shaped members with compact webs and noncompact or slender flanges) provisions using an example.

Week 4: Plate Girder Flexural Capacity (AISC360 F4 and F5)

Discuss in detail plate girder design following AISC 360 F4 (Other I-shaped members with compact or noncompact webs bent about their major axis) and F5 (Doubly symmetric and singly symmetric I-shaped members with slender webs bent about their major axis) provisions using an example.

Week 5: Plate Girder Shear Capacity – Intro and Basic Theory of Shear Capacity

Discuss plate girder shear capacity including the shear capacity of an I-shaped section, yield criteria, and buckling behavior.

Week 6: Plate Girder Shear Capacity – Tension Field Action

Introduce tension field action and discuss its contribution to the shear strength of plate girders through a design example.

Week 7: Plate Girder Shear Capacity – Transverse Stiffeners and Design Examples

Discuss transverse stiffeners design and finish with two plate girder design examples.

Week 8: Exam Review

Frequently Asked Questions

Skip Frequently Asked Questions

Does this course require a textbook?

Yes. This course will require the following textbook and manual.

The instructor also recommends the following:

Who can take this course?

Unfortunately, learners residing in one or more of the following countries or regions will not be able to register for this course: Iran, Cuba and the Crimea region of Ukraine. While edX has sought licenses from the U.S. Office of Foreign Assets Control (OFAC) to offer our courses to learners in these countries and regions, the licenses we have received are not broad enough to allow us to offer this course in all locations. edX truly regrets that U.S. sanctions prevent us from offering all of our courses to everyone, no matter where they live.

Interested in this course for your business or team?

Train your employees in the most in-demand topics, with edX For Business.