• Duración:
    12 semanas
  • Dedicación:
    2–3 horas por semana
  • Precio:

    Agregar un Certificado Verificado por $49 USD

  • Institución
  • Tema:
  • Nivel:
  • Idioma:
  • Transcripción de video:
  • Tipo de curso:
    Al ritmo del instructor


Experience with R, Python and/or SQL is required unless the course is taken with computer scientists in the team.

Sobre este curso

Omitir Sobre este curso

Research has been traditionally viewed as a purely academic undertaking, especially in limited-resource healthcare systems. Clinical trials, the hallmark of medical research, are expensive to perform, and take place primarily in countries which can afford them. Around the world, the blood pressure thresholds for hypertension, or the blood sugar targets for patients with diabetes, are established based on research performed in a handful of countries. There is an implicit assumption that the findings and validity of studies carried out in the US and other Western countries generalize to patients around the world.

This course was created by members of MIT Critical Data, a global consortium that consists of healthcare practitioners, computer scientists, and engineers from academia, industry, and government, that seeks to place data and research at the front and center of healthcare operations.

Big data is proliferating in diverse forms within the healthcare field, not only because of the adoption of electronic health records, but also because of the growing use of wireless technologies for ambulatory monitoring. The world is abuzz with applications of data science in almost every field – commerce, transportation, banking, and more recently, healthcare. These breakthroughs are due to rediscovered algorithms, powerful computers to run them, and most importantly, the availability of bigger and better data to train the algorithms. This course provides an introductory survey of data science tools in healthcare through several hands-on workshops and exercises.

Who this course is aimed at

The most daunting global health issues right now are the result of interconnected crises. In this course, we highlight the importance of a multidisciplinary approach to health data science. It is intended for front-line clinicians and public health practitioners, as well as computer scientists, engineers and social scientists, whose goal is to understand health and disease better using digital data captured in the process of care.

We highly recommend that this course be taken as part of a team consisting of clinicians and computer scientists or engineers. Learners from the healthcare sector are likely to have difficulties with the programming aspect while the computer scientists and engineers will not be familiar with the clinical context of the exercises and workshops.

The MIT Critical Data team would like to acknowledge the contribution of the following members: Aldo Arevalo, Alistair Johnson, Alon Dagan, Amber Nigam, Amelie Mathusek, Andre Silva, Chaitanya Shivade, Christopher Cosgriff, Christina Chen, Daniel Ebner, Daniel Gruhl, Eric Yamga, Grigorich Schleifer, Haroun Chahed, Jesse Raffa, Jonathan Riesner, Joy Tzung-yu Wu, Kimiko Huang, Lawerence Baker, Marta Fernandes, Mathew Samuel, Philipp Klocke, Pragati Jaiswal, Ryan Kindle, Shrey Lakhotia, Tom Pollard, Yueh-Hsun Chuang, Ziyi Hou.

Lo que aprenderás

Omitir Lo que aprenderás
  • Principles of data science as applied to health

  • Analysis of electronic health records

  • Artificial intelligence and machine learning in healthcare

Plan de estudios

Omitir Plan de estudios

Section 1 provides a general perspective about digital health data, their potential and challenges for research and use for retrospective analyses and modeling. Section 2 focuses on the Medical Information Mart for Intensive Care (MIMIC) database, curated by the Laboratory for Computational Physiology at MIT. The learners will have an opportunity to develop their analytical skills while following a research project, from the definition of a clinical question to the assessment of the analysis’ robustness. The last section is a collection of the workshops around the applications of data science in healthcare.

Conoce a tus instructores

Louis Agha-Mir-Salim
University of Southampton
Leo Anthony Celi
MIT, Harvard Medical School, Harvard T.H. Chan School of Public Health
Marie-Laure Charpignon
MSc, BSc
Massachusetts Institute of Technology
Kenneth Eugene Paik
Massachusetts Institute of Technology

Obtén un Certificado Verificado para destacar los conocimientos y las habilidades que adquieras
$49 USD

Ver un modelo de certificado de edX en PDF
  • Oficial y verificado

    Obtén un certificado con la firma del instructor y el logotipo de la institución para demostrar tus logros y aumentar las posibilidades de conseguir trabajo

  • Fácil de compartir

    Agrega el certificado a tu currículum o publícalo directamente en LinkedIn

  • Incentivo comprobado

    El certificado te da un motivo más para completar el curso

  • Apoya nuestra labor

    edX, una organización sin fines de lucro, se sustenta con los certificados verificados para financiar la educación gratuita para todo el mundo

¿Quién puede hacer este curso?

Lamentablemente, las personas de uno o más de los siguientes países o regiones no podrán registrarse para este curso: Irán, Cuba y la región de Crimea en Ucrania. Si bien edX consiguió licencias de la Oficina de Control de Activos Extranjeros de los EE. UU. (U.S. Office of Foreign Assets Control, OFAC) para ofrecer nuestros cursos a personas en estos países y regiones, las licencias que hemos recibido no son lo suficientemente amplias como para permitirnos dictar este curso en todas las ubicaciones. edX lamenta profundamente que las sanciones estadounidenses impidan que ofrezcamos todos nuestros cursos a cualquier persona, sin importar dónde viva.