Ir al contenido principal

Computation Structures 3: Computer Organization

Learn how to turn a processor into an entire computer system in this interactive computer science course from MIT.
Computation Structures 3: Computer Organization
Este curso está archivado
10 semanas estimadas
6 horas por semana
Al ritmo del instructor
Dictado por un instructor según un cronograma
Gratis
Cambio opcional de categoría disponible

Sobre este curso

Omitir Sobre este curso

Digital systems are at the heart of the information age in which we live, allowing us to store, communicate and manipulate information quickly and reliably. This computer science course is a bottom-up exploration of the abstractions, principles, and techniques used in the design of digital and computer systems. If you have a rudimentary knowledge of electricity and some exposure to programming, roll up your sleeves, join in and design a computer system!

This is Part 3 of a 3-part series on digital systems, providing an introduction to the hardware/software interface and is based on a course offered by the MIT Department of Electrical Engineering and Computer Science. Topics include pipelined computers, virtual memories, implementation of a simple time-sharing operating system, interrupts and real-time, and techniques for parallel processing.

Using your browser for design entry and simulation, you’ll optimize your processor design from Part 2 for size and speed, and make additions to a simple time-sharing operating system.

Learner Testimonial

"Out of the many edX courses I have taken, the first two parts of 6.004x were clearly the best. I am looking forward to the third part.” -- Previous Student

De un vistazo

  • Idioma:English
  • Transcripción de video:English

Lo que aprenderás

Omitir Lo que aprenderás
  • How to use pipelining to increase a processor’s throughput
  • Virtualization as a way to share a single processor among many tasks
  • Basic organization of a simple time-shared operating system
  • Appropriate techniques for parallel processing

Plan de estudios

Omitir Plan de estudios
  • Pipelined Beta: pipelined execution of instructions, data and control hazards, resolving hazards using bypassing, stalling and speculation.
  • Virtual Memory: extending the memory hierarchy, paging using hierarchical page maps and look-aside buffers, contexts and context switching, integrating virtual memories with caches.
  • Operating Systems: processes, interrupts, time sharing, supervisor calls.
  • Devices and Interrupts: device handlers asynchronous I/O, stalling supervisor calls, scheduling, interrupt latencies, weak and strong priority systems.
  • Processes, Synchronization and Deadlock: inter-process communication, bounded buffer problem, semaphores for precedence and mutual exclusion, semaphore implementation, dealing with deadlock.
  • Interconnect: the truth about wires, point-to-point vs. shared interconnect, communication topologies.
  • Parallel Processing: instruction-, data- and thread-level parallelism, Amdahl’s Law, cache coherency.
  • Labs: optimizing your Beta design for size and speed, emulating instructions, extending a simple time-sharing operating system.

Acerca de los instructores

¿Te interesa este curso para tu negocio o equipo?

Capacita a tus empleados en los temas más solicitados con edX para Negocios.