• Duración:
    15 semanas
  • Dedicación:
    6–9 horas por semana
  • Precio:

    GRATIS
    Agregar un Certificado Verificado por $750 USD

  • Institución
  • Tema:
  • Nivel:
    Intermediate
  • Idioma:
    English
  • Transcripción de video:
    English
  • Tipo de curso:
    Al ritmo del instructor

Prerrequisitos

Undergraduate calculus and basic knowledge of statistical analysis.

Sobre este curso

Omitir Sobre este curso

The availability of low cost and ubiquitous sensors in city infrastructure provides high granular data at unprecedented spatiotemporal scales. “Smart Cities” envision to utilize this data to provide a healthy, happy and sustainable urban ecosystem by integrating the information and communication technology (ICT), Internet of things (IoT) and citizen participation to effectively manage and utilize city infrastructure and services. “Data Science” is an interdisciplinary field of scientific methods, processes, algorithms and systems to extract knowledge from data in various forms and provides fast and efficient understanding of the current dynamics of cities and ways to improve different services. This course will introduce scientific techniques that will allow the analysis, inference and prediction of large-scale data (e.g. GPS vehicular data, social media data, mobile phone data, individual social network data, etc.) that are present in city networks. Basics of the data science methods to analyze these datasets will be presented. The course will focus both on the methods and their application to smart-city problems. Python will be used to demonstrate the application of each method on datasets available to the instructor. Examples of problems that will be discussed include ridesharing platforms, smart and energy-efficient buildings, evacuation modeling, decision making during extreme events & urban resilience.

Lo que aprenderás

Omitir Lo que aprenderás
  • Classify the different types of data generated by smart cities.
  • Apply the basics of various data mining techniques.
  • Map the data mining tool that is appropriate for various smart city applications.
  • Code, apply and solve the data mining algorithms using Python.
  • Interpret the results from the data mining tools and make connections to policy making as they relate to smart cities applications.

Plan de estudios

Omitir Plan de estudios

Unit 1. Introduction to Data Mining

Week 1: Introduction to the course and syllabus, Review of statistical methods

Instructor introduction, introduction to data mining, course overview, student introduction, introduction of statistical methods, modeling uncertainty, random variables, population and samples, and statistical inference.

Week 2: Optimization, Data pre-processing

Introduction to optimization, optimization-basic concepts, optimization problem formulation, optimization algorithms, data and measurement, types of datasets, data quality, data pre-processing, and task identification.

Week 3: Project discussion/Introduction to Python

Introduction to Python, Python for data mining, optimization using Python, and data pre-processing using python.

Unit 2. Data Mining Tasks

Week 4: Regression analysis, Association rule mining

Introduction to regression analysis, Linear regression, Logistic regression models, Poisson regression models, applications of regression analysis to smart cities, introduction to associate rule mining, association rule mining applications to urban systems, and association rule mining approaches.

Week 5: Association rule mining, Statistical classification

A-priori algorithm, F-P growth algorithm, ECLAT, evaluation methods, introduction to the classification problem, Logistic regression, Naïve Bayes classifier, and Bayesian network classifier.

Weeks 6 and 7: Decision tree, Support vector machines

Introduction to decision trees, decision tree training, decision tree algorithms, practical issues with decision trees, introduction to support vector machines, support vector machines, ensemble classifiers, and classifier performance evaluation.

Weeks 8 and 9: Introduction to data clustering, Clustering algorithms: Partitional and Hierarchical

Introduction to data clustering, (dis)similarity measures, distribution (model)-based clustering algorithms, types of clustering algorithms, partitional clustering (k-means and its variants), and hierarchical clustering.

Week 10: Other clustering approaches, Anomaly detection

Density-based clustering algorithms, cluster validity, characteristics of “data, clusters, and clustering algorithms”, introduction to anomaly detection, the anomaly detection problem, and anomaly detection techniques.

Week 11: Review of materials and project check-up, Avoiding false discoveries

Review of materials and project check-up, review of a real-world application, introduction to avoiding false discoveries, statistical significance testing, hypothesis testing, and multiple hypothesis testing.

Unit 3. Advanced Data Mining Techniques

Week 12: Neural networks, Deep learning

Introduction to neural networks, a neuron model, learning an ANN model, multi-layer-feed-forward ANNs, ANN application to land use prediction, introduction to deep learning, deep learning, and deep learning for smart cities.

Week 13: Self-organizing maps (SOM), Hidden Markov models (HMMs)* __ *

Introduction to self-organizing maps, SOM components & training, SOM application for transportation, introduction to HMMs, Markov process, graphical models, discrete-state HMMs, and applications of HMMs to Smart Cities.

Week 14: Case studies of Data Science applications for Smart Cities

Week 15: Virtual Exam and Project submission

Conoce a tus instructores

Satish Ukkusuri
Data Science for Smart Cities
Purdue University

Obtén un Certificado Verificado para destacar los conocimientos y las habilidades que adquieras
$750 USD

Ver un modelo de certificado de edX en PDF
  • Oficial y verificado

    Obtén un certificado con la firma del instructor y el logotipo de la institución para demostrar tus logros y aumentar las posibilidades de conseguir trabajo

  • Fácil de compartir

    Agrega el certificado a tu currículum o publícalo directamente en LinkedIn

  • Incentivo comprobado

    El certificado te da un motivo más para completar el curso

  • Apoya nuestra labor

    edX, una organización sin fines de lucro, se sustenta con los certificados verificados para financiar la educación gratuita para todo el mundo

¿Quién puede hacer este curso?

Lamentablemente, las personas de uno o más de los siguientes países o regiones no podrán registrarse para este curso: Irán, Cuba y la región de Crimea en Ucrania. Si bien edX consiguió licencias de la Oficina de Control de Activos Extranjeros de los EE. UU. (U.S. Office of Foreign Assets Control, OFAC) para ofrecer nuestros cursos a personas en estos países y regiones, las licencias que hemos recibido no son lo suficientemente amplias como para permitirnos dictar este curso en todas las ubicaciones. edX lamenta profundamente que las sanciones estadounidenses impidan que ofrezcamos todos nuestros cursos a cualquier persona, sin importar dónde viva.