Ir al contenido principal

Data Storage and Processing

Master the culture of data representation, interpretation and outcomes evaluation. Learn the fundamentals of relational and NoSQL database management systems.

Data Storage and Processing

Hay una sesión disponible:

Una vez finalizada la sesión del curso, será archivado.
Comienza el 22 oct
Termina el 17 nov
5 semanas estimadas
2–4 horas por semana
A tu ritmo
Avanza a tu ritmo
Gratis
Verificación opcional disponible

Sobre este curso

Omitir Sobre este curso

Want to learn data processing and interpreting the result you’ve got? This course is for you! Get acquainted with preparing and analyzing large amount of data, as well as data storage fundamentals.

This course is an introduction to initial data processing. We will start with data types and sources, methods of data preparation: cleaning, filling in the missing values, data smoothing and normalization. The course will familiarize you with the descriptive statistics and data visualization methods. You will also learn how to analyze time series and find trends.

Get acquainted with the fundamentals of data storage and access: databases types, relational and NoSQL databases, big data initials.

No previous programming knowledge needed.

De un vistazo

  • Institución: ITMOx
  • Tema: Análisis de datos
  • Nivel: Introductory
  • Prerrequisitos:

    High school mathematics and basic statistics concepts

Lo que aprenderás

Omitir Lo que aprenderás
  • Initial data processing (data cleaning and filling in the missing values)
  • Data smoothing and normalization
  • Data visualization
  • Time series analysis
  • Descriptive statistics
  • Data storage and access by means of relational DBMS
  • NoSQL databases and Big data

Plan de estudios

Omitir Plan de estudios

Week 1: Data preprocessing. Basic concepts of data processing. Stages of data analysis (collection, sorting, transformation, building models and interpretation). Data measurements and scales. Data types and sources. Data preparing.

Week 2: Data processing tools and visualization. Digital spreadsheets. Data visualization goals. Methods and purposes of correct data visualization.

Week 3: Data processing. Descriptive statistics. Data normalization and transformation. Time-series analysis and forecasting. Types of time-series smoothing. Trends, seasonal time series modelling.

Week 4: Relational databases management systems. Introduction to relational DBMS starting from relational data model. SQL statements and queries creation. Database indexes and transactions requirements.

Week 5: NoSQL. Main characteristics of not only SQL databases. Non-structured and semi-structured data and scalability of NoSQL databases. Types of NoSQL databases: column-oriented, key-value store, document store and graph databases.

Acerca de los instructores

¿Te interesa este curso para tu negocio o equipo?

Capacita a tus empleados en los temas más solicitados con edX para Negocios.