• Duración:
    6 semanas
  • Dedicación:
    2–4 horas por semana
  • Precio:

    GRATIS
    Agregar un Certificado Verificado por $99 USD

  • Institución
  • Tema:
  • Nivel:
    Intermediate
  • Idioma:
    English
  • Transcripción de video:
    English
  • Tipo de curso:
    A tu ritmo

Programas asociados:

Prerrequisitos

  • Python & Jupyter notebooks
  • Machine Learning concepts
  • Deep Learning concepts
  • https://www.edx.org/course/pytorch-basics-for-machine-learning

Sobre este curso

Omitir Sobre este curso

This course is the second part of a two-part course on how to develop Deep Learning models using Pytorch.

In the first course, you learned the basics of PyTorch; in this course, you will learn how to build deep neural networks in PyTorch. Also, you will learn how to train these models using state of the art methods. You will first review multiclass classification, learning how to build and train a multiclass linear classifier in PyTorch. This will be followed by an in-depth introduction on how to construct Feed-forward neural networks in PyTorch, learning how to train these models, how to adjust hyperparameters such as activation functions and the number of neurons.

You will then learn how to build and train deep neural networks—learning how to apply methods such as dropout, initialization, different types of optimizers and batch normalization. We will then focus on Convolutional Neural Networks, training your model on a GPU and Transfer Learning (pre-trained models). You will finally learn about dimensionality reduction and autoencoders. Including principal component analysis, data whitening, shallow autoencoders, deep autoencoders, transfer learning with autoencoders, and autoencoder applications.

Finally, you will test your skills in a final project.

Lo que aprenderás

Omitir Lo que aprenderás
  • Apply knowledge of Deep Neural Networks and related machine learning methods
  • Build and Train Deep Neural Networks using PyTorch
  • Build Deep learning pipelines

Plan de estudios

Omitir Plan de estudios

Module 1 - Classification

  • Softmax Regression
  • Softmax in PyTorch Regression
  • Training Softmax in PyTorch Regression

Module 2 - Neural Networks

  • Introduction to Networks
  • Network Shape Depth vs Width
  • Back Propagation
  • Activation functions

Module 3 - Deep Networks

  • Dropout
  • Initialization
  • Batch normalization
  • Other optimization methods

Module 4 - Computer Vision Networks

  • Convolution
  • Max Polling
  • Convolutional Networks
  • Pre-trained Networks

Module 5 - Computer Vision Networks

  • Convolution
  • Max Pooling
  • Convolutional Networks
  • Training your model with a GPU
  • Pre-trained Networks

Module 6 Dimensionality reduction and autoencoders

  • Principle component analysis
  • Linear autoencoders
  • Autoencoders
  • Transfer learning
  • Deep Autoencoders

Module 7 -Independent Project

Conoce a tus instructores

Joseph Santarcangelo
PhD., Data Scientist
IBM

Obtén un Certificado Verificado para destacar los conocimientos y las habilidades que adquieras
$99 USD

Ver un modelo de certificado de edX en PDF
  • Oficial y verificado

    Obtén un certificado con la firma del instructor y el logotipo de la institución para demostrar tus logros y aumentar las posibilidades de conseguir trabajo

  • Fácil de compartir

    Agrega el certificado a tu currículum o publícalo directamente en LinkedIn

  • Incentivo comprobado

    El certificado te da un motivo más para completar el curso

  • Apoya nuestra labor

    edX, una organización sin fines de lucro, se sustenta con los certificados verificados para financiar la educación gratuita para todo el mundo

¿Quién puede hacer este curso?

Lamentablemente, las personas de uno o más de los siguientes países o regiones no podrán registrarse para este curso: Irán, Cuba y la región de Crimea en Ucrania. Si bien edX consiguió licencias de la Oficina de Control de Activos Extranjeros de los EE. UU. (U.S. Office of Foreign Assets Control, OFAC) para ofrecer nuestros cursos a personas en estos países y regiones, las licencias que hemos recibido no son lo suficientemente amplias como para permitirnos dictar este curso en todas las ubicaciones. edX lamenta profundamente que las sanciones estadounidenses impidan que ofrezcamos todos nuestros cursos a cualquier persona, sin importar dónde viva.