• Duración:
    5 semanas
  • Dedicación:
    2–4 horas por semana
  • Precio:

    GRATIS
    Agregar un Certificado Verificado por $199 USD

  • Institución
  • Tema:
  • Nivel:
    Introductory
  • Idioma:
    English
  • Transcripción de video:
    English
  • Tipo de curso:
    A tu ritmo

Programas asociados:

Prerrequisitos

Basic Scripting in Python

Sobre este curso

Omitir Sobre este curso

What do you know about TinyML? Tiny Machine Learning (TinyML) is one of the fastest-growing areas of Deep Learning and is rapidly becoming more accessible. This course provides a foundation for you to understand this emerging field.

TinyML is at the intersection of embedded Machine Learning (ML) applications, algorithms, hardware, and software. TinyML differs from mainstream machine learning (e.g., server and cloud) in that it requires not only software expertise, but also embedded-hardware expertise.

The first course in the TinyML Certificate series, Fundamentals of TinyML will focus on the basics of machine learning, deep learning, and embedded devices and systems, such as smartphones and other tiny devices. Throughout the course, you will learn data science techniques for collecting data and develop an understanding of learning algorithms to train basic machine learning models. At the end of this course, you will be able to understand the “language” behind TinyML and be ready to dive into the application of TinyML in future courses.

Following Fundamentals of TinyML, the other courses in the TinyML Professional Certificate program will allow you to see the code behind widely-used Tiny ML applications—such as tiny devices and smartphones—and deploy code to your own physical TinyML device. Fundamentals of TinyML provides an introduction to TinyML and is not a prerequisite for Applications of TinyML or Deploying TinyML for those with sufficient machine learning and embedded systems experience.

Lo que aprenderás

Omitir Lo que aprenderás
  • Fundamentals of Machine Learning (ML)
  • Fundamentals of Deep Learning
  • How to gather data for ML
  • How to train and deploy ML models
  • Understanding embedded ML
  • Responsible AI Design

Plan de estudios

Omitir Plan de estudios
  • Overview of the TinyML Course Series
  • Why the Future of Machine Learning is Tiny and Bright
  • The Building Blocks of Machine Learning and Deep Learning
  • Responsible Machine Learning Design

Conoce a tus instructores

Vijay Janapa Reddi
Associate Professor
John A. Paulson School of Engineering and Applied Sciences (SEAS), Harvard University
Laurence Moroney
Lead AI Advocate
Google

Obtén un Certificado Verificado para destacar los conocimientos y las habilidades que adquieras
$199 USD

Ver un modelo de certificado de edX en PDF
  • Oficial y verificado

    Obtén un certificado con la firma del instructor y el logotipo de la institución para demostrar tus logros y aumentar las posibilidades de conseguir trabajo

  • Fácil de compartir

    Agrega el certificado a tu currículum o publícalo directamente en LinkedIn

  • Incentivo comprobado

    El certificado te da un motivo más para completar el curso

  • Apoya nuestra labor

    edX, una organización sin fines de lucro, se sustenta con los certificados verificados para financiar la educación gratuita para todo el mundo

¿Quién puede hacer este curso?

Lamentablemente, las personas de uno o más de los siguientes países o regiones no podrán registrarse para este curso: Irán, Cuba y la región de Crimea en Ucrania. Si bien edX consiguió licencias de la Oficina de Control de Activos Extranjeros de los EE. UU. (U.S. Office of Foreign Assets Control, OFAC) para ofrecer nuestros cursos a personas en estos países y regiones, las licencias que hemos recibido no son lo suficientemente amplias como para permitirnos dictar este curso en todas las ubicaciones. edX lamenta profundamente que las sanciones estadounidenses impidan que ofrezcamos todos nuestros cursos a cualquier persona, sin importar dónde viva.