• Duración:
    6 semanas
  • Dedicación:
    8–10 horas por semana
  • Precio:

    GRATIS
    Agregar un Certificado Verificado por $150 USD

  • Institución
  • Tema:
  • Nivel:
    Advanced
  • Idioma:
    English
  • Transcripción de video:
    English
  • Tipo de curso:
    Al ritmo del instructor

Programas asociados:

Prerrequisitos

You should be familiar with an undergraduate level, or have a background, in mathematics and statistics. Previous experience with a procedural programming language is beneficial (e.g. Python, C, Java, Visual Basic).

Sobre este curso

Omitir Sobre este curso

This course provides you with the skills to build a predictive model from the ground up, using Python.

You will learn the full lifecycle of building the model. First, you'll understand the data discovery process and discover how to make connections between the predicting and predicted variables. You will also learn about key data transformation and preparation issues, which form the backdrop to an introduction in Python for data analytics.

Through the analysis of real-life data, you will also develop an approach to implement simple linear and logistic regression models. These real-life examples include assessments on customer credit card behavior and case studies on sales volume forecasting.

This course is the first in the MicroMasters program and will prepare you for modeling classification and regression problems with statistical and machine learning methods.

Lo que aprenderás

Omitir Lo que aprenderás

In this course you will:

  • Understand the predictive analytics process
  • Gather and prepare data for predictive modelling
  • Clean datasets to prevent data quality issues in your models
  • Implement linear and logistic refression models using real-life data

Plan de estudios

Omitir Plan de estudios

Week 1: Introduction to Predictive Modelling
Week 2: Python andPredictive Modelling
Week 3: Variables and the Modelling Process
Week 4: Transformation and Preparation of Data
Week 5: Data Quality Problems and Other Anomalies
Week 6: Regression and Case Study

Conoce a tus instructores

Dr Johannes De Smedt
Dixons Carphone Lecturer in Business Analytics
The University of Edinburgh
Obinna Unigwe
Course Tutor
The University of Edinburgh
Sofia Varypati
Course Tutor
University of Edinburgh
Dr Xuefei Lu
Lecturer in Predictive Analytics
University of Edinburgh

Obtén un Certificado Verificado para destacar los conocimientos y las habilidades que adquieras
$150 USD

Ver un modelo de certificado de edX en PDF
  • Oficial y verificado

    Obtén un certificado con la firma del instructor y el logotipo de la institución para demostrar tus logros y aumentar las posibilidades de conseguir trabajo

  • Fácil de compartir

    Agrega el certificado a tu currículum o publícalo directamente en LinkedIn

  • Incentivo comprobado

    El certificado te da un motivo más para completar el curso

  • Apoya nuestra labor

    edX, una organización sin fines de lucro, se sustenta con los certificados verificados para financiar la educación gratuita para todo el mundo

Testimonios de los estudiantes

"So far I have learned about the foundation of the predictive analytics process and how to formulate simple predictive models using Python. It has already helped me to be more involved in the Risk Model development project in my role at the bank." - Valdy Mustafa, Indonesia

Preguntas frecuentes

What type of activities will I complete on the course?
This course foregrounds self-directed and active ways of learning: reading, coding in Python, knowledge check quizzes, and peer discussion. In addition, the course features videos that demonstrate relevant predictive analysis techniques and concepts.

What software will I be required to use?
All coding activities on this course will be hosted on Vocareum. You will be able to access this free software directly within the edX platform. There is no requirement to purchase further software in order to complete this course.

What do I need to complete the course?
For successful completion of this course, you will need access to a computer or mobile device and a reliable internet connection.

What is the University of Edinburgh Accessibility Guidance?

The University of Edinburgh is committed to providing online information and services accessible to all. Edx provide an accessibility statement which is available via the footer of all edx.org pages and includes an 'Accessibility Feedback' form which allows Learners to register feedback directly with the edx. Courses created by the University of Edinburgh contain an Accessibility Statement which addresses equality of access to information and servicesandis available via the 'Support' page.

¿Quién puede hacer este curso?

Lamentablemente, las personas de uno o más de los siguientes países o regiones no podrán registrarse para este curso: Irán, Cuba y la región de Crimea en Ucrania. Si bien edX consiguió licencias de la Oficina de Control de Activos Extranjeros de los EE. UU. (U.S. Office of Foreign Assets Control, OFAC) para ofrecer nuestros cursos a personas en estos países y regiones, las licencias que hemos recibido no son lo suficientemente amplias como para permitirnos dictar este curso en todas las ubicaciones. edX lamenta profundamente que las sanciones estadounidenses impidan que ofrezcamos todos nuestros cursos a cualquier persona, sin importar dónde viva.