• Duración:
    10 semanas
  • Dedicación:
    10–20 horas por semana
  • Precio:

    GRATIS
    Agregar un Certificado Verificado por $49 USD

  • Institución
  • Tema:
  • Nivel:
    Introductory
  • Idioma:
    English
  • Transcripciones de video:
    English, Português
  • Tipo de curso:
    Al ritmo del instructor

Prerrequisitos

Basic probability, matrices, and calculus. Familiarity with some programming language or platform will help with the homework.

Sobre este curso

Omitir Sobre este curso

This introductory computer science course in machine learning will cover basic theory, algorithms, and applications. Machine learning is a key technology in Big Data, and in many financial, medical, commercial, and scientific applications. It enables computational systems to automatically learn how to perform a desired task based on information extracted from the data. Machine learning has become one of the hottest fields of study today and the demand for jobs is only expected to increase. Gaining skills in this field will get you one step closer to becoming a data scientist or quantitative analyst.

This course balances theory and practice, and covers the mathematical as well as the heuristic aspects. The lectures follow each other in a story-like fashion:

  • What is learning?
  • Can a machine learn?
  • How to do it?
  • How to do it well?
  • Take-home lessons.

Lo que aprenderás

Omitir Lo que aprenderás
  • Identify basic theoretical principles, algorithms, and applications of Machine Learning
  • Elaborate on the connections between theory and practice in Machine Learning
  • Master the mathematical and heuristic aspects of Machine Learning and their applications to real world situations

Plan de estudios

Omitir Plan de estudios

The topics in the story line are covered by 18 lectures of about 60 minutes each plus Q&A.

  • Lecture 1: The Learning Problem
  • Lecture 2: Is Learning Feasible?
  • Lecture 3: The Linear Model I
  • Lecture 4: Error and Noise
  • Lecture 5: Training versus Testing
  • Lecture 6: Theory of Generalization
  • Lecture 7: The VC Dimension
  • Lecture 8: Bias-Variance Tradeoff
  • Lecture 9: The Linear Model II
  • Lecture 10: Neural Networks
  • Lecture 11: Overfitting
  • Lecture 12: Regularization
  • Lecture 13: Validation
  • Lecture 14: Support Vector Machines
  • Lecture 15: Kernel Methods
  • Lecture 16: Radial Basis Functions
  • Lecture 17: Three Learning Principles
  • Lecture 18: Epilogue

Conoce a tus instructores

Yaser S. Abu-Mostafa
Professor, Electrical Engineering and Computer Science
California Institute of Technology

Obtén un Certificado Verificado para destacar los conocimientos y las habilidades que adquieras
$49 USD

Ver un modelo de certificado de edX en PDF
  • Oficial y verificado

    Obtén un certificado con la firma del instructor y el logotipo de la institución para demostrar tus logros y aumentar las posibilidades de conseguir trabajo

  • Fácil de compartir

    Agrega el certificado a tu currículum o publícalo directamente en LinkedIn

  • Incentivo comprobado

    El certificado te da un motivo más para completar el curso

  • Apoya nuestra labor

    edX, una organización sin fines de lucro, se sustenta con los certificados verificados para financiar la educación gratuita para todo el mundo