Ir al contenido principal

Nanophotonic Modeling

Learn a comprehensive set of simulation techniques to predict the performance of photonic nanostructures.

Hay una sesión disponible:

¡Ya se inscribieron 5,493! Una vez finalizada la sesión del curso, será archivado.
Comienza el 14 feb 2022
Termina el 28 mar 2022
5 semanas estimadas
8–9 horas por semana
Al ritmo del instructor
Con un cronograma específico
Gratis
Verificación opcional disponible

Sobre este curso

Omitir Sobre este curso

This course is an introduction to photonic materials and devices structured on the wavelength scale. Generally, these systems will be characterized as having critical dimensions at the nanometer scale. These can include nanophotonic, plasmonic, and metamaterials components and systems.

This course will aim to introduce students to computational techniques employed in current design and research efforts in nanophotonics. You will learn the strengths and weaknesses of each approach; what types of problems call for which one; and how your simulation will perform.

Techniques include eigenvalue problems, fast Fourier transforms, band structure calculations, rigorous-coupled wave analysis, and finite-difference time-domain. Applications include photovoltaics, thermal management, radiative control, and nonlinear optics. It is expected to be useful for graduate students interested in incorporating these techniques into their projects or thesis research.

Students taking this course will be required to complete four (4) proctored exams using the edX online Proctortrack software. Completed exams will be scanned and sent using Gradescope for grading by Professor Bermel.

Recommended Textbook for the course:
Photonic Crystals: Molding the Flow of Light by J.D. Jaonnopoulos, S.G.Johnson, J.N. Winn, and R.B. Meade, Princeton University Press, 2008
ISNB Number: 9780691224568

Nanophotonic Modeling is one course in a growing suite of unique, 1-credit-hour short courses being developed in an edX/Purdue University collaboration. Students may elect to pursue a verified certificate for this specific course alone or as one of the six courses needed for the edX/Purdue MicroMasters program in Nanoscience and Technology. For further information and other courses offered and planned, please see the Nanoscience and Technology page.

Courses like this can also apply toward a Master's Degree in Electrical and Computer Engineering for students accepted into the full master’s program at Purdue University.

De un vistazo

  • Institución: PurdueX
  • Tema: Ingeniería
  • Nivel: Advanced
  • Prerrequisitos:
    • This course is intended for audiences with a background in the physical sciences or engineering.
    • Basic familiarity with the principles of Maxwell's equations, covered in a first year class on physics, is needed.
    • Some working knowledge of integral and vector calculus, as well as basic linear algebra, is assumed.
    • Prior experience with basic programming techniques and algorithms is useful but not strictly required; pointers to web-based resources covering these background topics will be available.

Lo que aprenderás

Omitir Lo que aprenderás
  • Photonic bandstructures
  • Transfer matrices
  • Time-domain simulations
  • Finite-element methods

Plan de estudios

Omitir Plan de estudios

Week 1: Photonic Bandstructures

  • Bloch Theorem
  • 1D Bandstructures
  • 2D Bandstructures
  • Photonic Crystals

Week 2: Photonic Bandstructures (continued)

  • Photonic Crystals
  • Photonic Bandstructure
  • Simulation using MIT Photonic Bands (MPB)

Week 3: Transfer Matrices

  • Ray Optical Matrices
  • Wave Optics Transfer Matrices
  • Wave Optics S-Matrices
  • Photonic Simulations
  • CAMFR
  • Metasurfaces

Week 4: Time-Domain Simulations

  • Finite Difference Time Domain Method
  • MEEP: An FDTD Solver
  • Light Trapping in Photovoltaics
  • Using MEEP
  • MEEP Resonators
  • MEEP: Photonic Bandstructures
  • FDTD Validation Against Experiment
  • Local Density of States

Week 5: Finite-Element Methods

  • Simulating Bandstructures in FDTD
  • Beam Propagation Method
  • Finite Element Method (FEM)
  • An FEM Waveguide Mode Solver
  • Thermal Transport
  • FEM Modeling
  • Blackbody Radiation

Acerca de los instructores

¿Quién puede hacer este curso?

Lamentablemente, las personas residentes en uno o más de los siguientes países o regiones no podrán registrarse para este curso: Irán, Cuba y la región de Crimea en Ucrania. Si bien edX consiguió licencias de la Oficina de Control de Activos Extranjeros de los EE. UU. (U.S. Office of Foreign Assets Control, OFAC) para ofrecer nuestros cursos a personas en estos países y regiones, las licencias que hemos recibido no son lo suficientemente amplias como para permitirnos dictar este curso en todas las ubicaciones. edX lamenta profundamente que las sanciones estadounidenses impidan que ofrezcamos todos nuestros cursos a cualquier persona, sin importar dónde viva.

¿Te interesa este curso para tu negocio o equipo?

Capacita a tus empleados en los temas más solicitados con edX para Negocios.