• Duración:
    4 semanas
  • Dedicación:
    7–8 horas por semana
  • Precio:

    Agregar un Certificado Verificado por $25 USD

  • Institución
  • Tema:
  • Nivel:
  • Idioma:
  • Transcripción de video:
  • Tipo de curso:
    Al ritmo del instructor


This course is suited for undergraduates with two semesters of general chemistry and two semesters of general physics. Familiarity with solid-state physics or elementary circuits is recommended but not required.

Sobre este curso

Omitir Sobre este curso

Organic electronic devices are quickly making their way into the commercial world, with innovative thin mobile devices, high-resolution displays, and photovoltaic cells. The future holds even greater potential for this technology, with an entirely new generation of ultra low-cost, lightweight and even flexible electronic devices, which will perform functions traditionally accomplished with much more expensive components based on conventional semiconductor materials, such as silicon.

Learn more about this highly promising technology, which is based on small molecules and polymers, and how these materials can be implemented successfully in established (e.g., organic light-emitting devices (OLEDs), organic photovoltaic (OPV) devices) and emerging (e.g., thermoelectric (TE) generators) organic electronic modules.

In this course, you will gain the ability to tie molecular transport phenomena with macroscopic device response such that you will be well-prepared to analyze, troubleshoot, and design the next generation of organic electronic materials and devices.

This course has short lectures with quizzes, homework, and exams.

This course is the latest nanoHUB-U project in a series offered is jointly funded by Purdue University and the NSF with the goal of transcending disciplines through short courses accessible to students in any branch of science or engineering.

Lo que aprenderás

Omitir Lo que aprenderás
  • Synthesis of Organic Semiconductors.
    • Identify common mechanisms for the synthesis of small molecule and polymer semiconductors
    • Describe the mechanism of controlled polymerization techniques for macromolecular semiconductors
    • Interpret spectroscopic, chromatographic, and molecular characterization data in order to predict the structure of the organic semiconductor.
  • Charge Generation and Transport and Optoelectronic Characterization of Organic Semiconductors.
    • Explain how molecular orbital levels are related to the optoelectronic properties of organic semiconductors
    • Distinguish between different models for charge transport in organic semiconductors; describe clearly the difference between charge generation and transport in organic and inorganic semiconductors.
  • Device Application of Organic Semiconductors.
    • Explain how organic electronic devices operate and how to apply known equations to evaluate device performance
    • Critique the potential for organic electronic materials to supplement or replace inorganic semiconducting devices.

Conoce a tus instructores

Bryan W. Boudouris
Weist Associate Professor of Chemical Engineering
Purdue University

Obtén un Certificado Verificado para destacar los conocimientos y las habilidades que adquieras
$25 USD

Ver un modelo de certificado de edX en PDF
  • Oficial y verificado

    Obtén un certificado con la firma del instructor y el logotipo de la institución para demostrar tus logros y aumentar las posibilidades de conseguir trabajo

  • Fácil de compartir

    Agrega el certificado a tu currículum o publícalo directamente en LinkedIn

  • Incentivo comprobado

    El certificado te da un motivo más para completar el curso

  • Apoya nuestra labor

    edX, una organización sin fines de lucro, se sustenta con los certificados verificados para financiar la educación gratuita para todo el mundo