Ir al contenido principal

Performative Modelling

This course focuses on evaluating alternative spatial models to support evidence-based decision making. You will learn methods for calculating various spatial performance metrics related to the built environment. You will use these performance metrics to carry out comparative analysis of design options. By the end of the course, you will be able to create scripts that automate the process of generating and analysing alternative design options.

Performative Modelling

Hay una sesión disponible:

Una vez finalizada la sesión del curso, será archivado.
Comienza el 1 nov
5 semanas estimadas
4–6 horas por semana
A tu ritmo
Avanza a tu ritmo
Gratis
Verificación opcional disponible

Sobre este curso

Omitir Sobre este curso

This course is the last in our “Spatial Computational Thinking” program. This “Performative Modelling” course focuses on evaluating alternative spatial models to support evidence-based decision making. You will learn methods for calculating various spatial performance metrics related to the built environment that can be used for comparative analysis of design options.

This course will build on the previous two courses that covered procedural and generative modelling. In this course, you will switch modes from generating to evaluating spatial performance. Thus, you will be creating procedures for evaluating alternative spatial models with respect to a set of performance indicators. This will once again require an increase in coding complexity, together with a new set of strategies for managing that complexity.

In this course, you will learn how to create your own reusable and customised function libraries. You will use this powerful technique to create a set of generative and performative functions. The generative functions will be used to generate alternative spatial models. The performative functions will be used to evaluate various performance metrics. You will then combine these functions, evaluating each spatial model against each performance metric.

The modelling exercises and assignments during this course will mainly focus on evaluating alternative spatial models for buildings within the urban environment. A site will be selected, and procedures will be developed for calculating performance metrics using morphological and raytracing analysis methods. The various metrics will then be weighted and aggregated, in order to allow alternative options to be easily compared.

Completing the three courses that make up the “Spatial Computational Thinking” program will provide you with the fundamental knowledge and skills required to tackle a wide variety computational design challenges using digital technologies.

De un vistazo

  • Institución: NUS
  • Tema: Diseño
  • Nivel: Advanced
  • Prerrequisitos:

    Completion of Course-1: Procedural modelling, and Course-2: Generative modelling of 'Spatial Computational Thinking' Professional Certificate program.

Lo que aprenderás

Omitir Lo que aprenderás

Learning algorithmic thinking:

* How to evaluate spatial models using morphological attributes and performance indicators

* Use abstraction as a way of selectively exposing the parameters that are most relevant to the problem being investigated

* Use encapsulation as a way of managing problem complexity

Learning performative modelling:

* Analysing performance indicators using morphological analysis and raytracing analysis

* Understanding morphological analysis: plot ratio, compacity ratio, passive zone proportion, etc

* Understanding raytracing analysis: sky view factor, sun exposure factor, viewsheds, etc

* Evaluating alternative spatial models based on multiple performance metrics

* Strategies for supporting decision making using weighted performance metrics

* Integrating non-spatial data formats into spatial information modelling workflows

* Strategies for data visualization

Learning coding:

* Understanding how to break down large procedures into a set of smaller functions

* Understanding how to document functions to support reuse

Understanding how to create and share libraries of functions that can be reused

Acerca de los instructores

Preguntas frecuentes

Omitir Preguntas frecuentes

What software will I need?

* The only software you need is a recent version of any Chromium-based web browser (such as Google Chrome, Microsoft Edge, Opera, or Brave). During the course, we will use a free and open-source software app called Möbius Modeller. Even after completing the course, you will be able to continue using this app for free.

What hardware will I need?

* You do not need any specialized hardware to complete the exercises in the course. A recent mid-range laptop will be sufficient. A laptop with a dedicated graphics card will result in a smoother user experience.

Do I need to know any programming languages before I start?

* No, this course is designed for beginners and we will step you through all the programming required.

Will I be able to write code after completing this program?

* Yes. You will learn procedural programming, using typical imperative programming-language constructs. You will also learn how to create computational procedures for manipulating spatial data in diverse ways.

Will I be able to share the computational models that I create?

* Yes. The models that you create (either during the course or after) can be shared either by exporting the models in other formats or by publishing them on the internet as interactive web pages. Publishing a model is straightforward and is one of the techniques that you will learn.

Will I learn how to program in any (JavaScript, Python etc.) language?

* You will learn the fundamental concepts of programming, such as variables, data types, control flow, data structures and functions. Although we will not specifically teach languages such as JavaScript, Python, etc, the fundamental concepts that you learn will be transferable to all these languages.

What is the passing grade for the course?

* An overall average for all assignments of 70% is required to pass the course.

Do I need to achieve 70% on each assignment?

* No, you need an average grade for all assignments of 70%. This means you can do poorly or miss an assignment as long as you do well enough on other assignments to achieve 70% overall.

How will my computational modelling assignments be graded?

* Most of your computational modelling assignments will be graded using an automated online grader. For each assignment, you will be given specific instructions on the model that you need to create. You will upload your answer model, and within a few seconds, you will receive the result, with feedback. If the model you uploaded is not correct, you will have multiple chances to try again. For the last assignment of the course, you will be required to create your own model from scratch. This final assignment will be manually graded.

¿Quién puede hacer este curso?

Lamentablemente, las personas residentes en uno o más de los siguientes países o regiones no podrán registrarse para este curso: Irán, Cuba y la región de Crimea en Ucrania. Si bien edX consiguió licencias de la Oficina de Control de Activos Extranjeros de los EE. UU. (U.S. Office of Foreign Assets Control, OFAC) para ofrecer nuestros cursos a personas en estos países y regiones, las licencias que hemos recibido no son lo suficientemente amplias como para permitirnos dictar este curso en todas las ubicaciones. edX lamenta profundamente que las sanciones estadounidenses impidan que ofrezcamos todos nuestros cursos a cualquier persona, sin importar dónde viva.

¿Te interesa este curso para tu negocio o equipo?

Capacita a tus empleados en los temas más solicitados con edX para Negocios.