• Duración:
    6 semanas
  • Dedicación:
    8–10 horas por semana
  • Precio:

    GRATIS
    Agregar un Certificado Verificado por $300 USD

  • Institución
  • Tema:
  • Nivel:
    Advanced
  • Idioma:
    English
  • Transcripción de video:
    English
  • Tipo de curso:
    Al ritmo del instructor

Programas asociados:

Prerrequisitos

You should be familiar with an undergraduate level, or have a background, in mathematics and statistics. Previous experience with a procedural programming language is beneficial (e.g. Python, C, Java, Visual Basic).

Learners pursuing the MicroMastersprogramme are strongly recommended to complete PA1.1x Introduction to Predictive Analytics using Python and PA1.2x Successfully Evaluating Predictive Modelling and PA1.3x Statistical Predictive Modelling and Applications on the verified track prior to undertaking this course.

Sobre este curso

Omitir Sobre este curso

This course will give you an overview of machine learning-based approaches for predictive modelling, including tree-based techniques, support vector machines, and neural networks using Python. These models form the basis of cutting-edge analytics tools that are used for image classification, text and sentiment analysis, and more.

The course contains two case studies: forecasting customer behaviour after a marketing campaign, and flight delay and cancellation predictions.

You will also learn:

  • Sampling techniques such as bagging and boosting, which improve robustness and overall predictive power, as well as random forests
  • Support vector machines by introducing you to the concept of optimising the separation between classes, before diving into support vector regression
  • Neural networks; their topology, the concepts of weights, biases, and kernels, and optimisation techniques

Lo que aprenderás

Omitir Lo que aprenderás

In this course, you will:

  • Understand the difference between machine learning and other statistical models
  • Practice building tree-based models, support vector machines and neural networks
  • Implement the theoretic models in machine learning-based software packages in Python
  • Apply machine learning models to business situations

Plan de estudios

Omitir Plan de estudios

Week 1: Decision trees
Week 2: Random forests and support vector machines
Week 3: Support vector machines
Week 4: Neural networks
Week 5: Neural network estimation and pitfalls
Week 6: Model comparison

Conoce a tus instructores

Dr Johannes De Smedt
Dixons Carphone Lecturer in Business Analytics
The University of Edinburgh
Sofia Varypati
Course Tutor
University of Edinburgh
Obinna Unigwe
Course Tutor
The University of Edinburgh

Obtén un Certificado Verificado para destacar los conocimientos y las habilidades que adquieras
$300 USD

Ver un modelo de certificado de edX en PDF
  • Oficial y verificado

    Obtén un certificado con la firma del instructor y el logotipo de la institución para demostrar tus logros y aumentar las posibilidades de conseguir trabajo

  • Fácil de compartir

    Agrega el certificado a tu currículum o publícalo directamente en LinkedIn

  • Incentivo comprobado

    El certificado te da un motivo más para completar el curso

  • Apoya nuestra labor

    edX, una organización sin fines de lucro, se sustenta con los certificados verificados para financiar la educación gratuita para todo el mundo

Preguntas frecuentes

What type of activities will I complete on the course?
This course foregrounds self-directed and active ways of learning: reading, coding in Python, knowledge check quizzes,and peer discussion. In addition, the course features videos that demonstrate relevant predictive analysis techniques and concepts.

What software will I be required to use?
All coding activities on thiscourse will be hosted onVocareum. You will be able to access this free software directlywithinthe edX platform. There is no requirement to purchase further software in order to complete this course.

What do I need to complete the course?
For successful completion of this course, you will need access to a computer ormobiledevice anda reliableinternet connection.

What is the University of Edinburgh Accessibility Guidance?

The University of Edinburgh is committed to providing online information and services accessible to all. Edx provide an accessibility statement which is available via the footer of all edx.org pages and includes an 'Accessibility Feedback' form which allows Learners to register feedback directly with the edx. Courses created by the University of Edinburgh contain an Accessibility Statement which addresses equality of access to information and servicesandis available via the 'Support' page.

¿Quién puede hacer este curso?

Lamentablemente, las personas de uno o más de los siguientes países o regiones no podrán registrarse para este curso: Irán, Cuba y la región de Crimea en Ucrania. Si bien edX consiguió licencias de la Oficina de Control de Activos Extranjeros de los EE. UU. (U.S. Office of Foreign Assets Control, OFAC) para ofrecer nuestros cursos a personas en estos países y regiones, las licencias que hemos recibido no son lo suficientemente amplias como para permitirnos dictar este curso en todas las ubicaciones. edX lamenta profundamente que las sanciones estadounidenses impidan que ofrezcamos todos nuestros cursos a cualquier persona, sin importar dónde viva.