• Duración:
    6 semanas
  • Dedicación:
    8–9 horas por semana
  • Precio:

    GRATIS
    Agregar un Certificado Verificado por $750 USD

  • Institución
  • Tema:
  • Nivel:
    Advanced
  • Idioma:
    English
  • Transcripción de video:
    English
  • Tipo de curso:
    Al ritmo del instructor

Programas asociados:

Prerrequisitos

Undergraduate physics, chemistry, and mathematics including basic differential equations.

Sobre este curso

Omitir Sobre este curso

This course provides the essential foundations required to understand the operation of semiconductor devices such as transistors, diodes, solar cells, light-emitting devices, and more. The material will primarily appeal to electrical engineering students whose interests are in applications of semiconductor devices in circuits and systems. The treatment is physical and intuitive, and not heavily mathematical.

Technology users will gain an understanding of the semiconductor physics that is the basis for devices. Semiconductor technology developers may find it a useful starting point for diving deeper into condensed matter physics, statistical mechanics, thermodynamics, and materials science. The course presents an electrical engineering perspective on semiconductors, but those in other fields may find it a useful introduction to the approach that has guided the development of semiconductor technology for the past 50+ years.

Students taking this course will be required to complete two (2) proctored exams using the edX online Proctortrack software.
Completed exams will be scanned and sent using Gradescope for grading by Professor Lundstrom.

Semiconductor Fundamentals is one course in a growing suite of unique, 1-credit-hour short courses being developed in an edX/Purdue University collaboration. Students may elect to pursue a verified certificate for this specific course alone or as one of the six courses needed for the edX/Purdue MicroMasters program in Nano-Science and Technology. For further information and other courses offered and planned, please see the Nano-Science and Technology page. Courses like this can also apply toward a Purdue University MSECE degree for students accepted into the full master’s program.

Lo que aprenderás

Omitir Lo que aprenderás

Students will learn about the following specific topics:

  • energy bands
  • band gaps
  • effective masses
  • electrons and holes
  • basics of quantum mechanics
  • the Fermi function
  • the density-of-states
  • intrinsic carrier density
  • doping and carrier concentrations
  • carrier transport
  • generation-recombination
  • quasi-Fermi levels
  • the semiconductor equations
  • energy band diagrams

Among the important learning objectives, the course will introduce learners to the process of drawing and interpreting energy band diagrams. Energy band diagrams are a powerful, conceptual way to qualitatively understand the operation of semiconductor devices. In a concise way, they encapsulate most of the device-relevant specifics of semiconductor physics. Drawing and interpreting an energy band diagram is the first step in understanding the operation of a device.

This course material is typically covered in the first few weeks of an introductory semiconductor device course, but this class provides a fresh perspective informed by new understanding of electronics at the nanoscale.

Plan de estudios

Omitir Plan de estudios

Week 1: Materials Properties and Doping

  • Energy levels to energy bands
  • Crystalline, polycrystalline, and amorphous semiconductors
  • Miller indices
  • Properties of common semiconductors
  • Free carriers in semiconductors

Week 2: Rudiments of Quantum Mechanics

  • The wave equation
  • Quantum confinement
  • Quantum tunneling and reflection
  • Electron waves in crystals
  • Density of states

Week 3: Equilibrium Carrier Concentration

  • The Fermi function
  • Fermi-Dirac integrals
  • Carrier concentration vs. Fermi level
  • Carrier concentration vs. doping density
  • Carrier concentration vs. temperature

Week 4: Carrier Transport, Generation, and Recombination

  • The Landauer approach
  • Current from the nanoscale to the macroscale
  • Drift-diffusion equation
  • Carrier recombination
  • Carrier generation

Week 5: The Semiconductor Equations

  • Mathematical formulation
  • Energy band diagrams
  • Quasi-Fermi levels
  • Minority carrier diffusion equation

Conoce a tus instructores

Mark S. Lundstrom
Don and Carol Scifres Distinguished Professor of Electrical and Computer Engineering, NAE member
Purdue University
Bikram K. Mahajan
PhD Student
Purdue University

Obtén un Certificado Verificado para destacar los conocimientos y las habilidades que adquieras
$750 USD

Ver un modelo de certificado de edX en PDF
  • Oficial y verificado

    Obtén un certificado con la firma del instructor y el logotipo de la institución para demostrar tus logros y aumentar las posibilidades de conseguir trabajo

  • Fácil de compartir

    Agrega el certificado a tu currículum o publícalo directamente en LinkedIn

  • Incentivo comprobado

    El certificado te da un motivo más para completar el curso

  • Apoya nuestra labor

    edX, una organización sin fines de lucro, se sustenta con los certificados verificados para financiar la educación gratuita para todo el mundo

¿Quién puede hacer este curso?

Lamentablemente, las personas de uno o más de los siguientes países o regiones no podrán registrarse para este curso: Irán, Cuba y la región de Crimea en Ucrania. Si bien edX consiguió licencias de la Oficina de Control de Activos Extranjeros de los EE. UU. (U.S. Office of Foreign Assets Control, OFAC) para ofrecer nuestros cursos a personas en estos países y regiones, las licencias que hemos recibido no son lo suficientemente amplias como para permitirnos dictar este curso en todas las ubicaciones. edX lamenta profundamente que las sanciones estadounidenses impidan que ofrezcamos todos nuestros cursos a cualquier persona, sin importar dónde viva.