• Duración:
    15 semanas
  • Dedicación:
    8–10 horas por semana
  • Precio:

    GRATIS
    Agregar un Certificado Verificado por $99 USD

  • Institución
  • Tema:
  • Nivel:
    Advanced
  • Idioma:
    English
  • Transcripción de video:
    English

Prerrequisitos

A sound familiarity with under/graduate statistics and probability but also basic programming proficiency, linear algebra and basic calculus. A sound familiarity with linear regression modeling.

Sobre este curso

Time Series Analysis has wide applicability in economic and financial fields but also to geophysics, oceanography, atmospheric science, astronomy, engineering, among many other fields of practice. This course will illustrate time series analysis using many applications from these fields.

In this course, students will learn standard time series analysis topics such as modeling time series using regression analysis, univariate ARMA/ARIMA modelling, (G)ARCH modeling, Vector Autoregressive (VAR) model along with forecasting, model identification and diagnostics. Students will be given fundamental grounding in the use of such widely used tools in modeling time series.

Throughout this course, students will be exposed to not only fundamental concepts of time series analysis but also many data examples using the R statistical software. Thus by the end of this course, students will also be familiar with the implementation of time series models using the R statistical software along with interpretation for the results derived from such implementations.

This class is more about the opportunity for individual discovery than it is about mastering a fixed set of techniques.

Lo que aprenderás


  • Widely used time series models such as univariate ARMA/ARIMA modelling, (G)ARCH modeling, and VAR model
  • Fundamental grounding in the ue of some widely used tools, but much of the energy of the course is focus on individual investigation and learning.
  • Implementation of time series models using the R statistical software
Weeks 1-3: Introduction to basic concepts of time series analysis

Weeks 4-6:
Introduction to the ARMA Modeling and its extension, including illustration with data examples

Week 7:
Midterm 1 Examination

Weeks 8-10: Introduction to most popular multivariate time series model, the VAR model, with data examples

Weeks 11-13: Introduction to GARCH modeling for heteroskedasticity, with data examples

Week 14: Midterm 2 Examination

Weeks 15: Overview of the time series models introduced in this course along with brief description of other time series methods

Week 16: Final Examination

Conoce a tus instructores

Nicoleta Serban
Associate Professor
Georgia Institute of Technology

Obtén un Certificado Verificado para destacar los conocimientos y las habilidades que adquieras $99.00

Ver un modelo de certificado de edX en PDF
  • Oficial y verificado

    Obtén un certificado con la firma del instructor y el logotipo de la institución para demostrar tus logros y aumentar las posibilidades de conseguir trabajo

  • Fácil de compartir

    Agrega el certificado a tu currículum o publícalo directamente en LinkedIn

  • Incentivo comprobado

    El certificado te da un motivo más para completar el curso

  • Apoya nuestra labor

    edX, una organización sin fines de lucro, se sustenta con los certificados verificados para financiar la educación gratuita para todo el mundo

¿Quién puede hacer este curso?

Lamentablemente, las personas de uno o más de los siguientes países o regiones no podrán registrarse para este curso: Irán, Cuba y la región de Crimea en Ucrania. Si bien edX consiguió licencias de la Oficina de Control de Activos Extranjeros de los EE. UU. (U.S. Office of Foreign Assets Control, OFAC) para ofrecer nuestros cursos a personas en estos países y regiones, las licencias que hemos recibido no son lo suficientemente amplias como para permitirnos dictar este curso en todas las ubicaciones. edX lamenta profundamente que las sanciones estadounidenses impidan que ofrezcamos todos nuestros cursos a cualquier persona, sin importar dónde viva.