Ir al contenido principal

Optimization: principles and algorithms - Unconstrained nonlinear optimization

Introduction to unconstrained nonlinear optimization, Newton’s algorithms and descent methods.

Hay una sesión disponible:

Una vez finalizada la sesión del curso, será archivado.
Comienza el 23 sept
6 semanas estimadas
6–8 horas por semana
A tu ritmo
Avanza a tu ritmo
Gratis
Cambio opcional de categoría disponible

Sobre este curso

Omitir Sobre este curso

Introduction to unconstrained nonlinear optimization, Newton’s algorithms and descent methods.

De un vistazo

  • Institución: EPFLx
  • Tema: Matemáticas
  • Nivel: Introductory
  • Prerrequisitos:

    The course assumes no prior knowledge of optimization. It relies heavily on linear algebra, analysis and calculus (matrices, derivatives, eigenvalues, etc.)

    The knowledge of the programming language Python is an asset to learn the details of the algorithms. However, it is possible to follow the course without programming at all.

  • Idioma: English
  • Transcripción de video: English

Lo que aprenderás

Omitir Lo que aprenderás

The course is structured into 6 sections:

  • Formulation: you will learn from simple examples how to formulate, transform and characterize an optimization problem.
  • Objective function: you will review the mathematical properties of the objective function that are important in optimization.
  • Optimality conditions: you will learn sufficient and necessary conditions for an optimal solution.
  • Solving equations, Newton: this is a reminder about Newton's method to solve nonlinear equations.
  • Newton's local method: you will see how to interpret and adapt Newton's method in the context of optimization.
  • Descent methods: you will learn the family of descent methods, and its connection with Newton's method.

Acerca de los instructores

¿Te interesa este curso para tu negocio o equipo?

Capacita a tus empleados en los temas más solicitados con edX para Negocios.