• Duración:
    6 semanas
  • Dedicación:
    3–6 horas por semana
  • Precio:

    GRATIS
    Agregar un Certificado Verificado por $249 USD

  • Institución
  • Tema:
  • Nivel:
    Introductory
  • Idioma:
    English
  • Transcripción de video:
    English
  • Tipo de curso:
    A tu ritmo

Programas asociados:

Sobre este curso

Omitir Sobre este curso

Visualizing Text Analytics with Python is the second course in the Text Analytics with Python professional certificate. Natural language processing (NLP) is only useful when its results are meaningful to humans. This second course continues by looking at how to make sense of our results using real-world visualizations.

How can we understand the incredible amount of knowledge that has been stored as text data? This course is a practical and scientific introduction to text analytics. That means you’ll learn how it works and why it works at the same time.

On the practical side, you’ll learn how to visualize and interpret the output of text analytics. You’ll learn how to create visualizations ranging from wordclouds, heatmaps, and line plots to distribution plots, choropleth maps, and facet grids. You’ll work through real case-studies using jupyter notebooks and to visualize the results of machine learning in Python using packages like pandas, matplotlib, and seaborn.

On the scientific side, you’ll learn what it means to understand language computationally. How do word embeddings and topic modeling relate to human cognition? Artificial intelligence and humans don’t view text documents in the same way. You’ll see how both deep learning and human beings interact with the meaning that is encoded in language.

Lo que aprenderás

Omitir Lo que aprenderás
  1. Practice using document similarity and topic models to work with large data sets.
  2. Visualize and interpret text analytics, including statistical significance testing.
  3. Assess the scientific and ethical foundations of new applications for text analysis.

Plan de estudios

Omitir Plan de estudios

Module 1. Text Similarity

Learn how to use machine learning to find out which words and documents have similar meanings

Module 2. Visualizing Text Analytics

Learn how to explain a model using visualization and significance testing

Module 3. Applying Text Analytics to New Fields

Learn how to apply computational linguistics to new problems and new data sets

Conoce a tus instructores

Jonathan Dunn
Lecturer
University of Canterbury
Tom Coupe
Associate Professor
University of Canterbury
Jeanette King
Professor
University of Canterbury
Girish Prayag
Professor
University of Canterbury

Obtén un Certificado Verificado para destacar los conocimientos y las habilidades que adquieras
$249 USD

Ver un modelo de certificado de edX en PDF
  • Oficial y verificado

    Obtén un certificado con la firma del instructor y el logotipo de la institución para demostrar tus logros y aumentar las posibilidades de conseguir trabajo

  • Fácil de compartir

    Agrega el certificado a tu currículum o publícalo directamente en LinkedIn

  • Incentivo comprobado

    El certificado te da un motivo más para completar el curso

  • Apoya nuestra labor

    edX, una organización sin fines de lucro, se sustenta con los certificados verificados para financiar la educación gratuita para todo el mundo