Skip to main content

LinuxFoundationX: Ethics in AI and Data Science

4.0 stars
16 ratings

Learn how to build and incorporate ethical principles and frameworks in your AI and Data Science technology and business initiatives to add transparency, build trust, drive adoption, and lead with trust and responsibility.

Ethics in AI and Data Science
6 weeks
1–2 hours per week
Progress at your own speed
Optional upgrade available

There is one session available:

11,243 already enrolled! After a course session ends, it will be archivedOpens in a new tab.
Starts Apr 15
Ends Aug 28

About this course

Skip About this course

Artificial Intelligence (AI) is often touted as a key technology spurring the Fourth Industrial Revolution in which the physical, digital and biological worlds are being fused together in a way that will have a tremendous impact on our global culture and economy. The unprecedented amount of data we create every day fuels this new paradigm of AI. This new world of opportunities also brings with it concerns about security, user privacy, data misuse, surveillance, data ownership, and more. People distrust the use of artificial intelligence and institutions that rely on it without building accountability and transparency. It is the responsibility of business and technology leaders and data scientists to change that: add transparency, develop standards and share best practices to drive AI adoption with trust.

Business leaders and data professionals today need AI frameworks and methods to achieve optimal results while also being good technology and business stewards. Though companies and institutions are adopting AI principles and the language of ethics, trust and responsibility has entered emerging technologies, AI and data science, there is still confusion about when and why it’s needed. This course introduces some of the principles and frameworks that puts ethics and responsibility into practice in the data analytics profession, and offers practical approaches to technical, business and leadership dilemmas and challenges posed by work in AI and Data Science.

At a glance

  • Language: English
  • Video Transcripts: اَلْعَرَبِيَّةُ, Deutsch, English, Español, Français, हिन्दी, Bahasa Indonesia, Português, Kiswahili, తెలుగు, Türkçe, 中文
  • Associated skills:Biology, Data Science, Artificial Intelligence, Emerging Technologies, Accountability, Data Analysis, Leadership, Ethical Principles

What you'll learn

Skip What you'll learn
  • Discuss the ethical challenges of AI and Data Science.

  • Understand the impacts of AI and Data Science.

  • Explore both the business and societal dynamics at work in an AI world.

  • Understand how to begin setting up a framework for AI Principles.

  • Discuss practical strategy and challenges of building an AI framework.

  • Learn the tools to put ethics and responsibility into practice at your organization or company.

  • Welcome!
  • Chapter 1. The State of Ethics, Trust & Responsibility with AI and Data Science
  • Chapter 2. What Do We Mean by Artificial Intelligence (AI) and Data Science and Why It Matters
  • Chapter 3. Strategies (& Challenges) of Putting Ethics & Responsibility into Practice
  • Final Exam (Verified track only)

Interested in this course for your business or team?

Train your employees in the most in-demand topics, with edX For Business.