Skip to main content

Aprendizaje automático y ciencia de datos

Aprende a valorizar y extraer conocimiento a partir de los datos, usando técnicas y herramientas de análisis de datos genéricas, y aprendizaje automático en particular.

Aprendizaje automático y ciencia de datos

There is one session available:

After a course session ends, it will be archived.
17,408 already enrolled!
Estimated 5 weeks
4–5 hours per week
Self-paced
Progress at your own speed
Free
Optional upgrade available

About this course

Skip About this course

El aprendizaje automático es una habilidad que toma cada vez más relevancia debido al gran número de datos (big data), los cuales deben de ser analizados para tomar decisiones.

En este curso en línea aprenderás los conceptos básicos del aprendizaje automático (machine learning) y la ciencia de datos.En particular,aprenderáslas técnicas necesarias para evaluar el rendimiento de los algoritmos y de los modelos obtenidos. También aprenderás como preprocesar los datos para obtener así modelos de mayor calidad (simples, comprensibles, eficientes, etc.). Por último, en este curso de análisis de datos aprenderás a poner en funcionamiento las técnicas estudiadas mediante un ejemplo prácticoprogramando tus propios scripts y algoritmos en R.

At a glance

  • Institution: UPValenciaX
  • Subject: Computer Science
  • Level: Intermediate
  • Prerequisites:

    El alumno ha de tener unos conocimientos básicos de programación, sin ningún lenguaje de programación en particular. Debe conocer lo que son vectores y matrices, a nivel muy básico. Es conveniente que conozca los indicadores estadísticos básicos (media, desviación típica, mediana, cuantiles, etc.), concepto de muestreo y nociones muy básicas (ofimáticas) con hojas de cálculo y tablas de datos.

  • Language: Español

What you'll learn

Skip What you'll learn
  • Reconocer el valor de los datos en las organizaciones y las posibilidades de negocio que plantea su explotación para el desarrollo de productos basados en datos (inteligencia de negocios)
  • Utilizar técnicas de aprendizaje automático, entre otras, para extraer modelos descriptivos y predictivos a partir de los datos, así como saber evaluarlos correctamente
  • Conocer y utilizar las herramientas básicas de integración y preparación de datos, incluyendo visualización de datos, para facilitar la comprensión y el análisis de los datos
  • Aprender a utilizar un lenguaje de programación de análisis de datos (lenguaje R) y las librerías básicas de visualización y algunas de las que permiten generar modelos de aprendizaje automático.

UNIDAD 1. Introducción al aprendizaje automático y la ciencia de datos
PRÁCTICA 1. Introducción al lenguaje R

UNIDAD 2. Evaluación de modelos de aprendizaje automático
PRÁCTICA 2. Evaluación de modelos de aprendizaje automático

UNIDAD 3. Técnicas básicas de aprendizaje automático
PRÁCTICA 3. Práctica de creación de modelos de aprendizaje automático

UNIDAD 4. Preprocesamiento de datos
PRÁCTICA 4. Visualización

PROYECTO

About the instructors

Interested in this course for your business or team?

Train your employees in the most in-demand topics, with edX for Business.