Applications of TinyML

Get the opportunity to see TinyML in practice. You will see examples of TinyML applications, and learn first-hand how to train these models for tiny applications such as keyword spotting, visual wake words, and gesture recognition.

Applications of TinyML

There is one session available:

After a course session ends, it will be archived.
8,716 already enrolled!
Estimated 6 weeks
2–4 hours per week
Self-paced
Progress at your own speed

About this course

Skip About this course

Do you know what happens when you say “OK Google” to a Google device? Is your Google Home always listening?

Following on the Foundations of Tiny ML course, Applications of TinyML will give you the opportunity to see tiny machine learning applications in practice. This course features real-world case studies, guided by industry leaders, that examine deployment challenges on tiny or deeply embedded devices.

Dive into the code for using sensor data for tasks such as gesture detection and voice recognition. Focusing on the neural network of the applications, specifically on training and inference, you will review the code behind “OK Google,” “Alexa,” and smartphone features on Android and Apple . Learn about real-word industry applications of TinyML as well as Keyword Spotting, Visual Wake Words, Anomaly Detection, Dataset Engineering, and Responsible Artificial Intelligence.

Tiny Machine Learning (TinyML) is one of the fastest-growing areas of deep learning and is rapidly becoming more accessible. The second course in the TinyML Professional Certificate program, Applications of TinyML shows you the code behind some of the world’s most widely-used TinyML devices.

At a glance

  • Institution: HarvardX
  • Subject: Data Analysis & Statistics
  • Level: Intermediate
  • Prerequisites:
    • Fundamentals of TinyML course or sufficient relevant experience:
      • Basic Scripting in Python
      • Basic usage of Colab
      • Basics of Machine Learning
      • Basics of Embedded Systems

What you'll learn

Skip What you'll learn
  • The code behind some of the most widely used applications of TinyML
  • Real-word industry applications of TinyML
  • Principles of Keyword Spotting
  • Principles of Visual Wake Words
  • Concept of Anomaly Detection
  • Principles of Dataset Engineering
  • Responsible AI Development
  • Chapter 1.1: Welcome to Applications of TinyML
  • Chapter 1.2: AI Lifecycle and ML Workflow
  • Chapter 1.3: Machine Learning on Mobile and Edge IoT Devices - Part 1
  • Chapter 1.4: Machine Learning on Mobile and Edge IoT Devices - Part 2
  • Chapter 1.5: Keyword Spotting
  • Chapter 1.6: Data Engineering for TinyML Applications
  • Chapter 1.7: Visual Wake Words
  • Chapter 1.8: Anomaly Detection
  • Chapter 1.9: Responsible AI Development
  • Chapter 1.10: Summary

About the instructors

Who can take this course?

Unfortunately, learners from one or more of the following countries or regions will not be able to register for this course: Iran, Cuba and the Crimea region of Ukraine. While edX has sought licenses from the U.S. Office of Foreign Assets Control (OFAC) to offer our courses to learners in these countries and regions, the licenses we have received are not broad enough to allow us to offer this course in all locations. edX truly regrets that U.S. sanctions prevent us from offering all of our courses to everyone, no matter where they live.