Интегральное исчисление

Войдите в мир математики — и это поможет вам добиться успеха практически в любой профессиональной деятельности!

Интегральное исчисление

There is one session available:

After a course session ends, it will be archived.
Estimated 11 weeks
2–6 hours per week
Self-paced
Progress at your own speed

About this course

Skip About this course

Под интегральным исчислением понимают раздел математического анализа, изучающий интегралы функций и их приложения. Изначально интегральное исчисление возникло из потребности создания общего метода нахождения площадей, объёмов и центров тяжести. Слово «интеграл» происходит от латинского integralis — целостный. Это название было предложено Иоганном Бернулли, чтобы отличить «сумму бесконечного числа слагаемых» от обычной суммы.

Интегрирование, в противоположность дифференцированию, можно рассматривать как искусство, что связано в первую очередь с малым количеством закономерностей, которым бы удовлетворяли все интегралы. При этом для существования интеграла, по основной теореме интегрального исчисления, необходима лишь непрерывность интегрируемой функции.

В данном курсе вы сможете приобщиться к этому искусству. В частности, рассмотрите основы математического анализа: первообразную, неопределенные и определенные интегралы, интегрирование рациональных и иррациональных выражений. В курсе разобраны методы интегрирования, примеры вычисления геометрических и физических характеристик, а также некоторые ограничения и особенности использования аппарата интегрального исчисления при решении инженерных задач.

Курс рассчитан на студентов всех инженерных специальностей, изучающих раздел высшей математики Интегральное исчисление. Данный курс является одним из курсов высшей математики, которые читаются студентам всех факультетов на кафедре Высшей математики «Национального исследовательского ядерного университета «МИФИ».

At a glance

  • Institution: MEPhIx
  • Subject: Math
  • Level: Introductory
  • Prerequisites:
    None
  • Language: Русский

What you'll learn

Skip What you'll learn

• Познакомитесь с базовыми понятиями: первообразная, неопределенный и определенный интеграл.
• Изучите основные теоремы интегрального исчисления и правила вычисления интегралов.
• Узнаете, что такое подстановка Эйлера, формула Ньютона–Лейбница, теорема Вейерштрасса.
• Научитесь интегрировать рациональные, иррациональные и тригонометрические функции.

Раздел 1. Первообразная. Неопределённый интеграл. Замена переменной в неопределённом интеграле. Формула интегрирования по частям.

Раздел 2. Интегрирование рациональных выражений.

Раздел 3. Интегрирование иррациональных выражений. Интегрирование тригонометрических выражений.

Раздел 4. Интеграл Римана.

Раздел 5. Вычисление интеграла Римана.

Раздел 6. Приложения интеграла Римана.

Раздел 7. Несобственные интегралы на бесконечном промежутке. Несобственные интегралы от неограниченных функций. Признаки сходимости.

Раздел 8. Сходимость условная и абсолютная. Признаки сходимости.

Раздел 9. Абсолютная и условная сходимость несобственных интегралов. Интеграл в смысле главного значения.

Раздел 10. Производные сложных функций, производные неявных функций, дифференциалы, производные высших порядков.

Раздел 11. Производные и дифференциалы неявных функций, производные и дифференциалы высших порядков. Формула Тейлора для функций нескольких переменных. Экстремум функций нескольких переменных.

About the instructors