Nanophotonic Modeling

Learn a comprehensive set of simulation techniques to predict the performance of photonic nanostructures.

This course is archived
Estimated 5 weeks
8–9 hours per week
Instructor-led on a course schedule

About this course

Skip About this course

This course is an introduction to photonic materials and devices structured on the wavelength scale. Generally, these systems will be characterized as having critical dimensions at the nanometer scale. These can include nanophotonic, plasmonic, and metamaterials components and systems.

This course will aim to introduce students to computational techniques employed in current design and research efforts in nanophotonics. You will learn the strengths and weaknesses of each approach; what types of problems call for which one; and how your simulation will perform.

Techniques include eigenvalue problems, fast Fourier transforms, band structure calculations, rigorous-coupled wave analysis, and finite-difference time-domain. Applications include photovoltaics, thermal management, radiative control, and nonlinear optics. It is expected to be useful for graduate students interested in incorporating these techniques into their projects or thesis research.

Students taking this course will be required to complete four (4) proctored exams using the edX online Proctortrack software. Completed exams will be scanned and sent using Gradescope for grading by Professor Bermel. During the proctored exams, this course will follow the Purdue University ECE policy, the calculator must be a Texas Instruments TI-30X IIS scientific calculator. ONLY the Texas Instruments TI-30X IIS scientific calculator will be allowed.

Nanophotonic Modeling is one course in a growing suite of unique, 1-credit-hour short courses being developed in an edX/Purdue University collaboration. Students may elect to pursue a verified certificate for this specific course alone or as one of the six courses needed for the edX/Purdue MicroMasters program in Nano-Science and Technology. For further information and other courses offered and planned, please see the Nano-Science and Technology page. Courses like this can also apply toward a Purdue University MSECE degree for students accepted into the full master’s program.

At a glance

  • Institution: PurdueX
  • Subject: Engineering
  • Level: Advanced
  • Prerequisites:
    • This course is intended for audiences with a background in the physical sciences or engineering.
    • Basic familiarity with the principles of Maxwell's equations, covered in a first year class on physics, is needed.
    • Some working knowledge of integral and vector calculus, as well as basic linear algebra, is assumed.
    • Prior experience with basic programming techniques and algorithms is useful but not strictly required; pointers to web-based resources covering these background topics will be available.

What you'll learn

Skip What you'll learn
  • Photonic bandstructures
  • Transfer matrices
  • Time-domain simulations
  • Finite-element methods

Week 1 & 2: Photonic Bandstructures

  • physical efforts of periodic media
  • Bloch solutions

Week 3: Transfer Matrices

  • transmission and reflections of multi-layer systems, with and without lateral periodicities

Week 4: Time-domain Simulations

  • leapfrog PDE solvers
  • Yee lattice
  • modern FDTD tools

Week 5: Finite-element Methods

  • Galerkin method
  • applications to photovoltaics
  • thermal management
  • radiative control

Textbook included in the course:
Photonic Crystals: Molding the Flow of Light
J.D. Jaonnopoulos, S.G.Johnson, J.N. Winn, and R.B. Meade
Princeton University Press, 2008
ISNB Number: 9780691224568

About the instructors

Who can take this course?

Unfortunately, learners from one or more of the following countries or regions will not be able to register for this course: Iran, Cuba and the Crimea region of Ukraine. While edX has sought licenses from the U.S. Office of Foreign Assets Control (OFAC) to offer our courses to learners in these countries and regions, the licenses we have received are not broad enough to allow us to offer this course in all locations. edX truly regrets that U.S. sanctions prevent us from offering all of our courses to everyone, no matter where they live.