• Length:
    5 Weeks
  • Effort:
    11–13 hours per week
  • Price:

    FREE
    Add a Verified Certificate for $49 USD

  • Institution
  • Subject:
  • Level:
    Intermediate
  • Language:
    English
  • Video Transcript:
    English

Prerequisites

  • Classical mechanics (or statics)
  • Chemistry at the first-year university level
  • Differential equations

About this course

Skip About this course

All around us, engineers are creating materials whose properties are exactly tailored to their purpose. This course is the first of three in a series of mechanics courses from the Department of Materials Science and Engineering at MIT. Taken together, these courses provide similar content to the MIT subject 3.032: Mechanical Behavior of Materials.

The 3.032x series provides an introduction to the mechanical behavior of materials, from both the continuum and atomistic points of view. At the continuum level, we learn how forces and displacements translate into stress and strain distributions within the material. At the atomistic level, we learn the mechanisms that control the mechanical properties of materials. Examples are drawn from metals, ceramics, glasses, polymers, biomaterials, composites and cellular materials.

Part 1 covers stress-strain behavior, topics in linear elasticity and the atomic basis for linear elasticity, and composite materials.

Part 2 covers stress transformations, beam bending, column buckling, and cellular materials.

Part 3 covers viscoelasticity (behavior intermediate to that of an elastic solid and that of a viscous fluid), plasticity (permanent deformation), creep in crystalline materials (time dependent behavior), brittle fracture (rapid crack propagation) and fatigue (failure due to repeated loading of a material).

What you'll learn

Skip What you'll learn
  • The behavior of linear elastic materials
  • The atomic basis for linear elasticity
  • How to solve mechanics problems relating to stress, strain, and strain energy
Week 1: Normal and shear stress Normal and shear strain Hooke's law for isotropic materials

Week 2:  3D stress states Stress strain curves for engineering materials Strain energy

Week 3: Anisotropic materials and symmetry Composite materials

Week 4: Bonding between atoms; energetic basis for linear elasticity; Thermal strain; origins of thermal strain Rubber elasticity: entropic basis for non-linear elasticity

Week 5:  Final Quiz

Meet your instructors

Lorna J. Gibson
Matoula S. Salapatas Professor of Materials Science and Engineering
MIT
Jessica Sandland
Lecturer & Digital Learning Scientist
Massachusetts Institute of Technology

Pursue a Verified Certificate to highlight the knowledge and skills you gain $49.00

View a PDF of a sample edX certificate
  • Official and Verified

    Receive an instructor-signed certificate with the institution's logo to verify your achievement and increase your job prospects

  • Easily Shareable

    Add the certificate to your CV or resume, or post it directly on LinkedIn

  • Proven Motivator

    Give yourself an additional incentive to complete the course

  • Support our Mission

    EdX, a non-profit, relies on verified certificates to help fund free education for everyone globally

Who can take this course?

Unfortunately, learners from one or more of the following countries or regions will not be able to register for this course: Iran, Cuba and the Crimea region of Ukraine. While edX has sought licenses from the U.S. Office of Foreign Assets Control (OFAC) to offer our courses to learners in these countries and regions, the licenses we have received are not broad enough to allow us to offer this course in all locations. EdX truly regrets that U.S. sanctions prevent us from offering all of our courses to everyone, no matter where they live.