• Duración:
    3 semanas
  • Dedicación:
    5–7 horas por semana
  • Precio:

    Agregar un Certificado Verificado por $99 USD

  • Institución
  • Tema:
  • Nivel:
  • Idioma:
  • Transcripción de video:
  • Tipo de curso:
    Al ritmo del instructor


We highly recommend that you take the previous course in this series before beginning this course:
Predictive Modeling in Learning Analytics

This course is intended for those who have a bachelor’s degree and are interested in developing learning and data science skills for employment in education, corporate, nonprofit, and military sectors. Experience with programming and statistics will be beneficial to participants.

Sobre este curso

Omitir Sobre este curso

How can data-intensive research methods be used to create more equitable and effective learning environments? In this course, you will learn how data from digital learning environments and administrative data systems can be used to help better understand relevant learning environments, identify students in need of support, and assess changes made to learning environments.

This course pays particular attention to the ways in which researchers and data scientists can transform raw data into features (i.e., variables or predictors) used in various machine learning algorithms. We will provide strategies for using prior research, knowledge from practice, and logic to create features, as well as build and evaluate machine learning models. The process of building features will be discussed within a broader data-intensive research workflow using R.

Lo que aprenderás

Omitir Lo que aprenderás
  • How to transform and visualize data using R
  • How to apply selected machine learning algorithms (e.g., logistic regression and decision trees) to regression and classification tasks in R
  • Strategies for applying data-intensive research workflows for feature engineering and model building

Plan de estudios

Omitir Plan de estudios

Week 1: Finding features
Introduction to setting up a feature engineering workflow, which includes identifying problems of practice, relevant research, and brainstorming potential features.

Week 2: Data wrangling and visualization
Introduction to data wrangling, data visualization techniques, and structure discovery algorithms. Integrating theory, knowledge from practice, logic, and contextual factors into feature engineering will also be discussed.

Week 3: Modeling features
Introduction to using features within selected machine learning algorithms (e.g. logistic regression and decision tree) and the tradeoffs between interpretability and prediction.

Conoce a tus instructores

Andrew E. Krumm
Director, Learning Analytics Research
Digital Promise

Obtén un Certificado Verificado para destacar los conocimientos y las habilidades que adquieras
$99 USD

Ver un modelo de certificado de edX en PDF
  • Oficial y verificado

    Obtén un certificado con la firma del instructor y el logotipo de la institución para demostrar tus logros y aumentar las posibilidades de conseguir trabajo

  • Fácil de compartir

    Agrega el certificado a tu currículum o publícalo directamente en LinkedIn

  • Incentivo comprobado

    El certificado te da un motivo más para completar el curso

  • Apoya nuestra labor

    edX, una organización sin fines de lucro, se sustenta con los certificados verificados para financiar la educación gratuita para todo el mundo