• Duración:
    8 semanas
  • Dedicación:
    10–12 horas por semana
  • Precio:

    GRATIS
    Agregar un Certificado Verificado por $99 USD

  • Institución
  • Tema:
  • Nivel:
    Intermediate
  • Idioma:
    English
  • Transcripción de video:
    English
  • Tipo de curso:
    Al ritmo del instructor

Prerrequisitos

Multivariable Calculus

(Derivatives, Integrals (1D, 2D))

Physics: Classical Mechanics

(Vectors, Forces, Torques, Newton’s Laws)

2.01x

(axial loading, torsion, bending in linear elastic structures)

Sobre este curso

Omitir Sobre este curso

In this course: (1) you will learn to model the multi-axial stress-strain response of isotropic linear elastic material due to combined loads (axial, torsional, bending); (2) you will learn to obtain objective measures of the severity of the loading conditions to prevent failure; (3) you will learn to use energy methods to efficiently predict the structural response of statically determinate and statically indeterminate structures.

This course will give you a foundation to predict and prevent structural failure and will introduce you to energy methods, which form one basis for numerical techniques (like the Finite Element Method) to solve complex mechanics problems

This is the third course in a 3-part series. In this series you will learn how mechanical engineers can use analytical methods and “back of the envelope” calculations to predict structural behavior. The three courses in the series are:

Part 1 – 2.01x: Elements of Structures. (Elastic response of Structural Elements: bars, shafts, beams).

Part 2 – 2.02.1x Mechanics of Deformable Structures: Part 1. (Assemblages of Elastic, Elastic-Plastic, and Viscoelastic Structural Elements).

Part 3 – 2.02.2x Mechanics of Deformable Structures: Part 2. (Multi-axial Loading and Deformation. Energy Methods).

These courses are based on the first subject in solid mechanics for MIT Mechanical Engineering students. Join them and learn to rely on the notions of equilibrium, geometric compatibility, and constitutive material response to ensure that your structures will perform their specified mechanical function without failing.

Lo que aprenderás

Omitir Lo que aprenderás
  • Hooke’s law for isotropic linear elastic materials and homogeneous problems in linear elasticity. Pressure vessels. Superposition of loading conditions.
  • Traction on a face. Stress transformation. Principal stress components. Stress and strain invariants. Tresca and Mises yield criteria.
  • Elastic strain energy. Castigliano methods. Potential energy formulations. Approximate solutions and the Rayleigh Ritz method

Plan de estudios

Omitir Plan de estudios

Unit 0: Review of Prerequisites. Integration of field variables. Introduction to MATLAB. Review of 2.01x: structural elements in axial loading, torsion, bending. Review of 2.02.1x: equilibrium and compatibility in 2D elastic assemblages.

Unit 1: Multi-axial stress and strain. The (nominal) stress tensor, the (small) strain tensor. Hooke’s law for linear isotropic elastic materials. Plane stress. Pressure vessels: components of stress and strain in cylindrical coordinates. Stress and strain states from superposition of loading conditions and kinematic constraints: applications to homogeneous states, pressure vessels, bars, shafts, beams.

Unit 2: Failure theories. Cauchy Result: traction vector. Stress and strain transformation and principal components of stress and strain. Principal directions and invariants. Design limits on multiaxial stress: design against fracture for brittle materials and design against plastic yielding for ductile materials (Tresca, Mises).

Quiz 1 (on Units 1 and 2)

Unit 3: Elastic Strain Energy and Castigliano’s theorems. Elastic strain energy; complementary energy. Castigliano’s second theorem to solve for kinematic degrees of freedom. Applications to assemblages of structural elements in axial loading, torsion and bending.

Unit 4: Minimum Potential Energy methods. Total potential energy of loaded structure. Equilibrium conditions. Applications to statically indeterminate trusses. Approximate solutions. Trial functions and the Rayleigh Ritz method. Applications to structural assemblages with bars, beams and shafts.

Quiz 2 (on Units 3 and 4)

Conoce a tus instructores

David Parks
Professor, Department of Mechanical Engineering
MIT
Simona Socrate
Senior Lecturer, Department of Mechanical Engineering
MIT

Obtén un Certificado Verificado para destacar los conocimientos y las habilidades que adquieras
$99 USD

Ver un modelo de certificado de edX en PDF
  • Oficial y verificado

    Obtén un certificado con la firma del instructor y el logotipo de la institución para demostrar tus logros y aumentar las posibilidades de conseguir trabajo

  • Fácil de compartir

    Agrega el certificado a tu currículum o publícalo directamente en LinkedIn

  • Incentivo comprobado

    El certificado te da un motivo más para completar el curso

  • Apoya nuestra labor

    edX, una organización sin fines de lucro, se sustenta con los certificados verificados para financiar la educación gratuita para todo el mundo

Preguntas frecuentes

Q: Is this course similar to a residential course at MIT?

A: Yes, the three course series covers the same material taught in the MIT residential course 2.001: Mechanics and Materials I (the first core course in mechanical engineering typically taken the first semester of sophomore year)

Q: Will we continue to use MATLAB as we did in 2.01x?

A: Yes

Q: Is it necessary to take 2.01x before enrolling in 2.02.2x?

A: Preferably yes. We assume that the learners are familiar with elementary solutions for linear elastic structural elements in axial loading, torsion and bending. We will provide a review of pertinent 2.01x material in Unit 0.

Q: Is it necessary to take 2.02.1x before enrolling in 2.02.2x?

A: Not strictly necessary. We will review pertinent 2.02.1x material in Unit 0 (Equilibrium and compatibility for 2D assemblages and trusses). No knowledge of thermo-elastic, elastic-plastic and viscoelastic material behavior is necessary for 2.02.2x.

¿Quién puede hacer este curso?

Lamentablemente, las personas de uno o más de los siguientes países o regiones no podrán registrarse para este curso: Irán, Cuba y la región de Crimea en Ucrania. Si bien edX consiguió licencias de la Oficina de Control de Activos Extranjeros de los EE. UU. (U.S. Office of Foreign Assets Control, OFAC) para ofrecer nuestros cursos a personas en estos países y regiones, las licencias que hemos recibido no son lo suficientemente amplias como para permitirnos dictar este curso en todas las ubicaciones. edX lamenta profundamente que las sanciones estadounidenses impidan que ofrezcamos todos nuestros cursos a cualquier persona, sin importar dónde viva.