• Duración:
    3 semanas
  • Dedicación:
    5–7 horas por semana
  • Precio:

    GRATIS
    Agregar un Certificado Verificado por $99 USD

  • Institución
  • Tema:
  • Nivel:
    Intermediate
  • Idioma:
    English
  • Transcripción de video:
    English
  • Tipo de curso:
    Al ritmo del instructor

Prerrequisitos

We highly recommend that you take the previous course in the series before beginning this course:
Learning Analytics Fundamentals

This course is intended for those who have a bachelor’s degree and are interested in developing learning analytics and data science skills for employment in education, corporate, nonprofit, and military sectors. Experience with programming and statistics will be beneficial to participants.

Sobre este curso

Omitir Sobre este curso

In this course, you will learn how relationships between people, artifacts, and ideas within learning settings can be analyzed and interpreted through social network analysis (SNA). You will learn how to prepare data and map these relationships to help you understand how people communicate and exchange information.

The course will review foundational concepts and applications of social network analysis in learning analytics. You will also learn how to use igraph and statnet R packages to manipulate, analyze, and visualize network data.

Lo que aprenderás

Omitir Lo que aprenderás

You will learn to:

  • apply the basics of social network analysis (SNA) at the network level (density, clustering, degree distribution, etc.); at the node level (degree, betweenness, closeness); at the sub-graph level (triads, communities);
  • design a research study using relational data;
  • conduct SNA of data collected in a learning setting;
  • apply basic functions of igraph and statnet R packages to analyze data.

Plan de estudios

Omitir Plan de estudios

Week 1: Navigating the Language of Networks
Introduction to networks including the basic concepts in social network analysis, i.e. nodes, edges, adjacency matrix, one and two-mode networks, node degree, connected components, average shortest path, diameter, preferential attachment, network centrality. The week will involve a hands-on task showing students how to calculate basic metrics in R.

Week 2: Applying Network Analysis in Educational Research
Overview of educational research and evidence produced using SNA applications, including differentiation between self-reported and digitally collected network data; ethical considerations; interpretation of basic metrics. The week’s task will include exploratory analysis of the selected dataset, and interpretation of results.

Week 3: The Use of Network Analytic Techniques in Learning Analytics
Introduction to the analysis of socio-technical networks, and applications of network analytic techniques in LA, i.e. community detection, bipartite network analysis, network clustering, integration with text analysis. Presentation of community detection, information flow analysis, and statistical approaches in network analysis. The students will be expected to select one approach out of those presented, and implement it on one of the suggested datasets in R.

Conoce a tus instructores

Sasha Poquet
Postdoctoral Researcher
National University of Singapore
Shane Dawson
Professor of Learning Analytics
University of South Australia

Obtén un Certificado Verificado para destacar los conocimientos y las habilidades que adquieras
$99 USD

Ver un modelo de certificado de edX en PDF
  • Oficial y verificado

    Obtén un certificado con la firma del instructor y el logotipo de la institución para demostrar tus logros y aumentar las posibilidades de conseguir trabajo

  • Fácil de compartir

    Agrega el certificado a tu currículum o publícalo directamente en LinkedIn

  • Incentivo comprobado

    El certificado te da un motivo más para completar el curso

  • Apoya nuestra labor

    edX, una organización sin fines de lucro, se sustenta con los certificados verificados para financiar la educación gratuita para todo el mundo