Ir al contenido principal

Machine Learning with Python: A Practical Introduction

Machine Learning can be an incredibly beneficial tool to uncover hidden insights and predict future trends. This Machine Learning with Python course will give you all the tools you need to get started with supervised and unsupervised learning.

Machine Learning with Python: A Practical Introduction

Hay una sesión disponible:

¡Ya se inscribieron 104,876! Una vez finalizada la sesión del curso, será archivado.
Comienza el Jul 23
5 semanas estimadas
4–6 horas por semana
A tu ritmo
Avanza a tu ritmo
Gratis
Cambio opcional de categoría disponible

Sobre este curso

Omitir Sobre este curso

Please Note: Learners who successfully complete this IBM course can earn a skill badge — a detailed, verifiable and digital credential that profiles the knowledge and skills you’ve acquired in this course. Enroll to learn more, complete the course and claim your badge!

This Machine Learning with Python course dives into the basics of machine learning using Python, an approachable and well-known programming language. You'll learn about supervised vs. unsupervised learning, look into how statistical modeling relates to machine learning, and do a comparison of each.

We'll explore many popular algorithms including Classification, Regression, Clustering, and Dimensional Reduction and popular models such as Train/Test Split, Root Mean Squared Error (RMSE), and Random Forests. Along the way, you’ll look at real-life examples of machine learning and see how it affects society in ways you may not have guessed!

Most importantly, you will transform your theoretical knowledge into practical skill using hands-on labs. Get ready to do more learning than your machine!

We'll explore many popular algorithms including Classification, Regression, Clustering, and Dimensional Reduction and popular models such asTrain/Test Split, Root Mean Squared Error and Random Forests.

Mostimportantly, you will transform your theoretical knowledge into practical skill using hands-on labs. Get ready to do more learning than your machine!

Premios

Machine Learning with Python: A Practical Introduction

De un vistazo

Lo que aprenderás

Omitir Lo que aprenderás
  • The difference between the two main types of machine learning methods: supervised and unsupervised
  • Supervised learning algorithms, including classification and regression
  • Unsupervised learning algorithms, including Clustering and Dimensionality Reduction
  • How statistical modeling relates to machine learning and how to compare them
  • Real-life examples of the different ways machine learning affects society

Plan de estudios

Omitir Plan de estudios

Module 1 - Introduction to Machine Learning
Applications of Machine Learning
Supervised vs Unsupervised Learning
Python libraries suitable for Machine Learning

Module 2 - Regression
Linear Regression
Non-linear Regression
Model evaluation methods

Module 3 - Classification
K-Nearest Neighbour
Decision Trees
Logistic Regression
Support Vector Machines
Model Evaluation

Module 4 - Unsupervised Learning
K-Means Clustering
Hierarchical Clustering
Density-Based Clustering

Module 5 - Recommender Systems
Content-based recommender systems
Collaborative Filtering

Acerca de los instructores

¿Quién puede hacer este curso?

Lamentablemente, las personas residentes en uno o más de los siguientes países o regiones no podrán registrarse para este curso: Irán, Cuba y la región de Crimea en Ucrania. Si bien edX consiguió licencias de la Oficina de Control de Activos Extranjeros de los EE. UU. (U.S. Office of Foreign Assets Control, OFAC) para ofrecer nuestros cursos a personas en estos países y regiones, las licencias que hemos recibido no son lo suficientemente amplias como para permitirnos dictar este curso en todas las ubicaciones. edX lamenta profundamente que las sanciones estadounidenses impidan que ofrezcamos todos nuestros cursos a cualquier persona, sin importar dónde viva.

¿Te interesa este curso para tu negocio o equipo?

Capacita a tus empleados en los temas más solicitados con edX para Negocios.