Ir al contenido principal

Monetary Policy Analysis and Forecasting

Learn about the macroeconomic motivation of the quarterly projection model (QPM), its key properties, model calibration, data filtration, and how to implement the QPM in MATLAB software in order to learn and understand practical model building and model operation as it is usually done in central banks.

Hay una sesión disponible:

¡Ya se inscribieron 11,227! Una vez finalizada la sesión del curso, será archivado.
Comienza el 16 sept
6 semanas estimadas
8–10 horas por semana
A tu ritmo
Avanza a tu ritmo
Gratis
Cambio opcional de categoría disponible

Sobre este curso

Omitir Sobre este curso

This online course, presented by the IMF's Institute for Capacity Development, introduces participants to quarterly projection macroeconomic models developed as a core of FPAS (Forecasting and Policy Analysis Systems) and how to implement the key canonical quarterly projection model (QPM) equations in a macroeconomic modeling software. This course uses detailed country data highlighting an inflation targeting central bank, for hands-on filtration and calibration exercises.

The course covers two main technical aspects:

  • introduction to a canonical New Keynesian model structure and its key properties; and
  • implementation of the QPM in Matlab/Octave and the application of IRIS toolbox for solving and maintaining the QPM.

In partnership with MathWorks, enrolled students have access to MATLAB for the duration of the course.

Monetary Policy Analysis and Forecasting is offered by the IMF with financial support from the Government of Japan.

De un vistazo

  • Idioma:English
  • Transcripción de video:English

Lo que aprenderás

Omitir Lo que aprenderás

Upon completion of this course, participants should be able to:

  • Explain the key building blocks of a canonical semi-structural QPM.
  • Interpret the key model equations from a macroeconomic point of view.
  • Implement a simple QPM using a specialized software for macroeconomic modelling.
  • Distinguish the key elements of a QPM in a state-space form (i.e. shocks, observable and unobservable variables, measurement and transition equations, steady-state parameters, equation coefficients).
  • Identify necessary codes for data transformation, filtration and evaluation of the QPM properties.
  • Apply the basic IRIS Toolbox functions for solving the model.
  • Create output reports using model codes.
  • Develop a basic calibration of the QPM.

Acerca de los instructores

¿Te interesa este curso para tu negocio o equipo?

Capacita a tus empleados en los temas más solicitados con edX para Negocios.