Ir al contenido principal

MITx: Fundamentals of Statistics

4.2 stars
70 ratings

Develop a deep understanding of the principles that underpin statistical inference: estimation, hypothesis testing and prediction. -- Part of the MITx MicroMasters program in Statistics and Data Science.

17 semanas
10–14 horas por semana
Al ritmo del instructor
Con un cronograma específico
Gratis
Verificación opcional disponible

Hay una sesión disponible:

¡Ya se inscribieron 159,312! Una vez finalizada la sesión del curso, será archivadoAbre en una pestaña nueva.
Comenzó el 29 ene
Termina el 25 may

Sobre este curso

Omitir Sobre este curso

Statistics is the science of turning data into insights and ultimately decisions. Behind recent advances in machine learning, data science and artificial intelligence are fundamental statistical principles. The purpose of this class is to develop and understand these core ideas on firm mathematical grounds starting from the construction of estimators and tests, as well as an analysis of their asymptotic performance.

After developing basic tools to handle parametric models, we will explore how to answer more advanced questions, such as the following:

  • How suitable is a given model for a particular dataset?
  • How to select variables in linear regression?
  • How to model nonlinear phenomena?
  • How to visualize high-dimensional data?

Taking this class will allow you to expand your statistical knowledge to not only include a list of methods, but also the mathematical principles that link them together, equipping you with the tools you need to develop new ones.

This course is part of theMITx MicroMasters Program in Statistics and Data Science. Master the skills needed to be an informed and effective practitioner of data science. You will complete this course and three others from MITx, at a similar pace and level of rigor as an on-campus course at MIT, and then take a virtually-proctored exam to earn your MicroMasters, an academic credential that will demonstrate your proficiency in data science or accelerate your path towards an MIT PhD or a Master's at other universities. To learn more about this program, please visit https://micromasters.mit.edu/ds/.

De un vistazo

  • Idioma: English
  • Transcripción de video: English
  • Habilidades asociadas:Basic Math, Parametric Modeling, Estimators, Data Science, Statistics, Artificial Intelligence, Construction, Linear Regression, Statistical Inference, Forecasting, Statistical Hypothesis Testing, Data Warehousing, Machine Learning

Lo que aprenderás

Omitir Lo que aprenderás
  • Construct estimators using method of moments and maximum likelihood, and decide how to choose between them
  • Quantify uncertainty using confidence intervals and hypothesis testing
  • Choose between different models using goodness of fit test
  • Make prediction using linear, nonlinear and generalized linear models
  • Perform dimension reduction using principal component analysis (PCA)

¿Quién puede hacer este curso?

Lamentablemente, las personas residentes en uno o más de los siguientes países o regiones no podrán registrarse para este curso: Irán, Cuba y la región de Crimea en Ucrania. Si bien edX consiguió licencias de la Oficina de Control de Activos Extranjeros de los EE. UU. (U.S. Office of Foreign Assets Control, OFAC) para ofrecer nuestros cursos a personas en estos países y regiones, las licencias que hemos recibido no son lo suficientemente amplias como para permitirnos dictar este curso en todas las ubicaciones. edX lamenta profundamente que las sanciones estadounidenses impidan que ofrezcamos todos nuestros cursos a cualquier persona, sin importar dónde viva.

Este curso es parte delprograma Statistics and Data Science (General track) MicroMasters

Más información 
Instrucción por expertos
5 cursos de nivel universitario
Dictado por instructores
Las tareas y los exámenes tienen fechas de entrega específicas
1 año 5 meses
10 - 14 horas semanales

¿Te interesa este curso para tu negocio o equipo?

Capacita a tus empleados en los temas más solicitados con edX para Negocios.