• Duración:
    5 semanas
  • Dedicación:
    4–6 horas por semana
  • Precio:

    GRATIS
    Agregar un Certificado Verificado por $49 USD

  • Institución
  • Tema:
  • Nivel:
    Intermediate
  • Idioma:
    English
  • Transcripción de video:
    English

Prerrequisitos

Exposure to programming and Linux. Basic understanding of matrix-matrix multiplication.

Sobre este curso

Is my code fast? Can it be faster? Scientific computing, machine learning, and data science are about solving problems that are compute intensive. Choosing the right algorithm, extracting parallelism at various levels, and amortizing the cost of data movement are vital to achieving scalable speedup and high performance.

In this course, the simple but important example of matrix-matrix multiplication is used to illustrate fundamental techniques for attaining high-performance on modern CPUs.  A carefully designed and scaffolded sequence of exercises leads the learner from a naive implementation to one that effectively utilizes instruction level parallelism and culminates in a high-performance multithreaded implementation.  Along the way, it is discovered that careful attention to data movement is key to efficient computing.

Prerequisites for this course are a basic understanding of matrix computations (roughly equivalent to Weeks 1-5 of Linear Algebra: Foundations to Frontiers on edX) and an exposure to programming.  Hands-on exercises start with skeletal code in the C programming language that is progressively modified, so that extensive experience with C is not required. Access to a relatively recent x86 processor such as Intel Haswell or AMD Ryzen (or newer) running Linux is required.  

MATLAB Online licenses will be made available to the participants free of charge for the duration of the course.

Join us to satisfy your need for speed!

Lo que aprenderás

·      Mapping algorithms to architectures

·      Extracting parallelism at multiple levels

·      Amortizing data movement over computation

·      Understanding performance data

·      Managing complexity through layering of software
0 Getting Started

1 Loops and More Loops

2 Start Your Engines

3 Pushing the Limits

4 Multithreaded Parallelism

Conoce a tus instructores

Maggie Myers
Lecturer, Department of Statistics and Data Sciences
The University of Texas at Austin
Robert van de Geijn
Professor of Computer Science
The University of Texas at Austin
Devangi Parikh
Research Fellow
The University of Texas at Austin

Obtén un Certificado Verificado para destacar los conocimientos y las habilidades que adquieras $49.00

Ver un modelo de certificado de edX en PDF
  • Oficial y verificado

    Obtén un certificado con la firma del instructor y el logotipo de la institución para demostrar tus logros y aumentar las posibilidades de conseguir trabajo

  • Fácil de compartir

    Agrega el certificado a tu currículum o publícalo directamente en LinkedIn

  • Incentivo comprobado

    El certificado te da un motivo más para completar el curso

  • Apoya nuestra labor

    edX, una organización sin fines de lucro, se sustenta con los certificados verificados para financiar la educación gratuita para todo el mundo

Testimonios de los estudiantes

“We will include this course as one of the main onboarding materials for our team’'

- Dr. Misha Smelyanskiy, Technical Lead and Manager of AI System Co-design Group at Facebook