• Length:
    5 Weeks
  • Effort:
    6–8 hours per week
  • Price:

    FREE
    Add a Verified Certificate for $99 USD

  • Institution
  • Subject:
  • Level:
    Intermediate
  • Language:
    English
  • Video Transcript:
    English
  • Course Type:
    Instructor-led on a course schedule

Prerequisites

None

About this course

Skip About this course

Many engineers are puzzled by questions such as: how to shift or reduce peak heating demand to obtain a better match with a smart grid or renewable energy system? What is thermally more efficient: a heavy concrete building or a light timber-frame building? How effective is night ventilation in warm periods?

This course will provide you with the answers to these and many other questions related to dynamic thermal behavior in buildings.

We start with a recap of the various heat transfer phenomena that affect buildings’ thermal behavior. Then you will learn how to combine them in dynamic energy balances of relevant building elements such as windows, façades, floors, indoor walls and ceilings, air, furniture, and even the occupants. You will be guided step by step through the construction of a differential equation network, enabling you to understand how to model thermal energy demand and temperature levels during the construction and use of existing buildings and new and innovative building systems.

Secondly, you will learn how to solve the resulting equations by using either finite difference or response factor methods. As a result, you will be able to discover for yourself the effects of different designs, and also understand the basic principles which underlie well-known Building Simulation Tools and HVAC software like Energy+, esp-r, DOE-2, Carrier-HAP or TRNSYS. Thus will help you to maximize your correct use of these tools in the future.

Finally, you will apply your knowledge by building your own test-software in the language of your choice (e.g. Matlab, R, Python) and solving several equation networks in order to answer the questions posed above and to thermally optimize rooms in buildings in terms of temperature and energy efficiency, and even to determine the thermal comfort level for occupants accounting for radiant temperatures.

What you'll learn

Skip What you'll learn
  1. How to apply diverse heat transfer laws to buildings.
  2. How to construct a thermal nodes network using different grey-box and white-box models.
  3. How to model a building’s dynamics, derive the corresponding balance equations, and solve the system of equations.
  4. To understand the effects of buildings’ construction and dynamic behavior on temperature profiles and energy demand and loads.
  5. How to combine pressure, mass and energy balances to model passive systems like a solar chimney or a ventilated cavity in a second-skin façade.

Meet your instructors

Laure Itard
Prof.dr.
TU Delft

Pursue a Verified Certificate to highlight the knowledge and skills you gain
$99 USD

View a PDF of a sample edX certificate
  • Official and Verified

    Receive an instructor-signed certificate with the institution's logo to verify your achievement and increase your job prospects

  • Easily Shareable

    Add the certificate to your CV or resume, or post it directly on LinkedIn

  • Proven Motivator

    Give yourself an additional incentive to complete the course

  • Support our Mission

    EdX, a non-profit, relies on verified certificates to help fund free education for everyone globally

Learner testimonials

Understanding and mastering dynamic building performance modelling is an important skill for the engineers of the future. The course Dynamic Energy Modelling for Buildings: Thermal Simulations is both relevant and important. Recent years have seen an increase in the number of buildings that overheat, and thermal simulations are an important tool in preventing overheating. Future building designers will need to be able to identify the most efficient and sustainable solutions, such as night cooling, solar chimneys, atriums, solar shading and ventilative cooling.

The methods and software used in the course make it possible to connect the thermal simulations to ventilation and energy performance and provide a full overview of the performance of the building. This is underpinned by an understanding of the mathematical models that are the foundation for the software.

The course is highly recommended!

Peter Foldbjerg

Senior Manager Daylight, Energy, and Indoor Climate The
VELUX Group