• Length:
    10 Weeks
  • Effort:
    10–12 hours per week
  • Price:

    Add a Verified Certificate for $99 USD

  • Institution
  • Subject:
  • Level:
  • Language:
  • Video Transcript:
  • Course Type:
    Instructor-led on a course schedule


  • Multivariable Calculus
  • Physics: Classical Mechanics
  • (Derivatives, Integrals (1D, 2D), Vectors, Forces, Torques)

About this course

Skip About this course
2.01x introduces principles of structural analysis and strength of materials in applications to three essential types of elastic load-bearing elements: bars in axial loading, axisymmetric shafts in torsion, and symmetric beams in bending. The course covers fundamental concepts of continuum mechanics, including internal resultants, displacement field, stress, and strain.

While emphasizing analytical techniques, the course also provides an introduction to computing environments (MATLAB).

This is the first course in a 3-part series. In this series you will learn how mechanical engineers can use analytical methods and “back of the envelope” calculations to predict structural behavior. The three courses in the series are:

Part 1 – 2.01x: Elements of Structures. (Elastic response of Structural Elements: Bars, Shafts, Beams).

Part 2 – 2.02.1x Mechanics of Deformable Structures: Part 1. (Thermal Expansion, Plasticity, Viscoelasticity. Assemblages of Elastic, Elastic-Plastic, and Viscoelastic Bars). Next session starts February 2019.

Part 3 – 2.02.2x Mechanics of Deformable Structures: Part 2. (Assemblages of Elastic, Elastic-Plastic, and Viscoelastic Bars Shafts and Beams. Multi-axial Loading and Deformation. Pressure vessels. Energy Methods). Next session starts June 2019.

These courses are based on the first subject in solid mechanics for MIT Mechanical Engineering students. Join them and learn to rely on the notions of equilibrium, geometric compatibility, and constitutive material response to ensure that your structures will perform their specified mechanical function without failing.

What you'll learn

Skip What you'll learn
In 2.01x you will:
  • Use free body diagrams to formulate equilibrium equations;
  • Identify geometric constraints to formulate compatibility equations;
  • Understand the concepts of stress and strain at a material point.
For three fundamental types of slender structural elements (elastic bars, beams and shafts) you will learn:
  • to calculate internal stress and strain fields in the loaded elements;
  • to predict the deformation in the loaded elements;
  • to design structural elements so as to prevent failure;
  • to use numerical methods (MATLAB) in structural engineering application.
Week 1: Introduction and Preliminaries
Introduction, Review of Forces and Moments, Review on Integration, Introduction to MATLAB.

Week 2: Axial loading I
Equilibrium in 1D. Free body diagrams. Internal force resultant. Normal stress and strain. Compatibility. Structural response for statically determinate bars in axial loading.

Week 3: Axial loading II
Response of inhomogeneous bars with varying cross section. Statically indeterminate problems.

Week 4: Quiz 1 (Axial Loading)

Week 5: Torsion I
Shear stress and strain. Internal torque resultant. Structural Response for statically determinate circular shafts in torsion.

Week 6: Torsion II
Response of inhomogeneous shafts with varying cross section. Statically indeterminate problems.

Week 7: Quiz 2 (Torsion)

Week 8: Bending I
Internal bending moment resultant. Curvature and neutral axis. Stress and strain distribution. Structural Response for statically determinate symmetric beams in bending.

Week 9: Bending II
Response of inhomogeneous beams with varying cross section. Statically indeterminate problems.

Week 10: Quiz 3 (Bending)

Meet your instructors

Simona Socrate
Senior Lecturer, Department of Mechanical Engineering
Alexie M. Kolpak
Rockwell International Career Development Assistant Professor, Department of Mechanical Engineering

Pursue a Verified Certificate to highlight the knowledge and skills you gain
$99 USD

View a PDF of a sample edX certificate
  • Official and Verified

    Receive an instructor-signed certificate with the institution's logo to verify your achievement and increase your job prospects

  • Easily Shareable

    Add the certificate to your CV or resume, or post it directly on LinkedIn

  • Proven Motivator

    Give yourself an additional incentive to complete the course

  • Support our Mission

    edX, a non-profit, relies on verified certificates to help fund free education for everyone globally

Learner testimonials

"This was an outstanding and truly enjoyable course...Didactic (and fun) video lessons; concise and clear board notes; problems and quizzes with outstanding (and very professionally presented) answer sections, which were very helpful to consolidate the acquired knowledge...Being a senior engineer who spent most of his career in management, it makes me really envious of the possibilities that current students, from all over the world, have to attend top classes as this one."

Frequently asked questions

Q: I am a little rusty on my calculus skills and physics foundation; will I be able to succeed in this course?
A: Probably yes!  During the first week we review all the concepts needed to understand the course material.

Q: Is this course similar to a residential course at MIT?
A: Yes, the three course series covers the same material taught in the MIT residential course 2.001: Mechanics and Materials I (the first core course in mechanical engineering typically taken the first semester of sophomore year)