• Length:
    4 Weeks
  • Effort:
    4–6 hours per week
  • Price:

    FREE
    Add a Verified Certificate for $50 USD

  • Institution
  • Subject:
  • Level:
    Intermediate
  • Language:
    English
  • Video Transcript:
    English

Prerequisites

Freshmen level college physics;
Understanding of differential equations
Introductory programming experience (any language acceptable, Python preferred)

About this course

In this course you will use fundamental engineering and mathematical tools to understand and analyze basic bioelectricity and circuit theory in the context of the mammalian nervous system.

This course is for students who are interested in learning about relating the systems of the human body that involve or communicate with bioelectrical systems, including the heart, brain, muscles, and the neuromuscular system that connects them all together.

Students will learn how bioelectricity can be used to record and control the way the body electric behaves. Suggested text: “Neuroscience” by Purves, et al.

This course is offered by the nanoHUB-U project, which is jointly funded by Purdue and NSF with the goal of transcending disciplines through short courses accessible to students in any branch of science or engineering. These courses focus on cutting-edge topics distilled into short lectures with quizzes, homework, and practice exams.

What you'll learn

  • Fundamentals of bioelectricity of the mammalian nervous system and other excitable tissues
  • Passive and active forms of electric signals in both the single cell and cell-cell communication
  • Tissue and systemic bioelectricity
  • Mathematical analysis including Nernst equation, Goldman equation, linear cable theory, and Hodgkin-Huxley Model of action potential generation and propagation
  • To design and build a wireless bioelectric recording device to control a prosthetic limb

Weeks 1 & 2: Introduction to the Nervous System
Simple neural circuits, electric signals in cells, resting potential of membranes, Nernst equation.
 
Weeks 3 - 5: Chemical Signaling
Filtering, spatio-temporal propagation, ion channels, post-snyaptic receptors, neurotransmitters and pathology, analog-to-digital conversion.
 
Weeks 6 & 7: Models of Conductors
Electrical variables in cells, core conductor model, Derivation of the cable model, time-dependent solutions.
 
Weeks 8 - 10: Hodgkin – Huxley
Alan Hodgkin and Andrew Huxley, ionic conductances, derivation of Hodgkin-Huxley eq., Insights from Hodgkin-Huxley
 
Weeks 11 - 12: Numerical Methods
Discrete time solutions, Euler method, bioelectric prosthesis control, Ronge-Kutta method, solving Hodgkin-Huxley.
 
Weeks 13 - 15: Applications of Bioelectricity
Parkinson’s Disease, epilepsy, drug addiction, targeted muscle reinnervation, optogenetics.

Pursue a Verified Certificate to highlight the knowledge and skills you gain $50.00

View a PDF of a sample edX certificate
  • Official and Verified

    Receive an instructor-signed certificate with the institution's logo to verify your achievement and increase your job prospects

  • Easily Shareable

    Add the certificate to your CV or resume, or post it directly on LinkedIn

  • Proven Motivator

    Give yourself an additional incentive to complete the course

  • Support our Mission

    EdX, a non-profit, relies on verified certificates to help fund free education for everyone globally