• Length:
    4 Weeks
  • Effort:
    12–12 hours per week
  • Price:

    FREE
    Add a Verified Certificate for $49 USD

  • Institution
  • Subject:
  • Level:
    Intermediate
  • Language:
    English
  • Video Transcript:
    English

Prerequisites

  • Classical mechanics (or statics)
  • Chemistry at the first-year university level
  • Differential equations
  • 3.032.1x, or an equivalent course in the elastic behavior of materials

About this course

All around us, engineers are creating materials whose properties are exactly tailored to their purpose. This course is the second of three in a series of mechanics courses from the Department of Materials Science and Engineering at MIT. Taken together, these courses provide similar content to the MIT subject 3.032: Mechanical Behavior of Materials.

The 3.032x series provides an introduction to the mechanical behavior of materials, from both the continuum and atomistic points of view. At the continuum level, we learn how forces and displacements translate into stress and strain distributions within the material. At the atomistic level, we learn the mechanisms that control the mechanical properties of materials. Examples are drawn from metals, ceramics, glasses, polymers, biomaterials, composites and cellular materials.

Part 1 covers stress-strain behavior, topics in linear elasticity and the atomic basis for linear elasticity, and composite materials.

Part 2 covers stress transformations, beam bending, column buckling, and cellular materials.

Part 3 covers viscoelasticity (behavior intermediate to that of an elastic solid and that of a viscous fluid), plasticity (permanent deformation), creep in crystalline materials (time dependent behavior), brittle fracture (rapid crack propagation) and fatigue (failure due to repeated loading of a material).

What you'll learn

  • Concepts relating to stress transformation, including equivalent stresses, principal stresses, and maximum shear stress
  • How to solve stress transformation problems using Mohr’s circle
  • How to solve problems relating to beam bending and column buckling
  • How the stiffness and strength of cellular materials depend on their mechanisms of deformation and failure
Week 1: Equivalent stresses for varying orientations Principal stresses, maximum shear stress Mohr’s circles
Week 2:  Stresses in beams Shear and bending moment diagrams in beams Strain energy
Week 3: Beam deflection Column buckling Cellular solids
Week 4:  Final Quiz

Meet your instructors

Lorna J. Gibson
Matoula S. Salapatas Professor of Materials Science and Engineering
MIT

Pursue a Verified Certificate to highlight the knowledge and skills you gain $49.00

View a PDF of a sample edX certificate
  • Official and Verified

    Receive an instructor-signed certificate with the institution's logo to verify your achievement and increase your job prospects

  • Easily Shareable

    Add the certificate to your CV or resume, or post it directly on LinkedIn

  • Proven Motivator

    Give yourself an additional incentive to complete the course

  • Support our Mission

    EdX, a non-profit, relies on verified certificates to help fund free education for everyone globally