• Length:
    7 Weeks
  • Effort:
    4–5 hours per week
  • Price:

    FREE
    Add a Verified Certificate for $60 USD

  • Institution
  • Subject:
  • Level:
    Intermediate
  • Language:
    English
  • Video Transcripts:
    English, 中文

About this course

Skip About this course
As a topic of study, semiconductor devices offer a unique challenge due to the complex mathematics involved. In this course, we take a more intuitive approach to explore the underlying concepts. Eschewing mathematics, we use engaging animations to help you visualize the working principles of many common semiconductor devices.

Whether you are completely new to the subject or an experienced engineer, this course will give you a different perspective and a new way to look at the behaviors of semiconductor devices.

Reducing the reliance of equations does not mean the depth of the material is sacrificed. In fact, the course provides even more in-depth explanations of key concepts. We shift the focus from quantitatively evaluating the behavior of semiconductor devices to intuitively visualizing the semiconductor device actions.

Follow the approach from Part I, we expand the understanding from PN junction diodes and BJTs to MOS capacitors, charge coupled devices and MOSFETs. In addition to describing the theory of MOSFETs, the course covers some more recent development of non-traditional nano-CMOS transistors. Besides covering the existing technologies, the course will also enable you to project the development of the industry in the near future.

What you'll learn

Skip What you'll learn
  • How to visualize the charge and capacitance characteristics of MOS capacitors
  • Ways to describe the operation principle of charge couple devices and CMOS active-pixel sensor to construct a digital camera
  • How to calculate the current voltage characteristics of MOSFETs
  • How the reduction of transistor dimensions and device scaling drive the technology development
  • What are the most important parameters to control short channel effects
  • How to construct short channel MOSFETs
  • Communication in the language of nano-CMOS technology
Week 1: MOS capacitor charges and capacitances
Introduction to the MOS capacitor structures, its charge and capacitance characteristics

Week 2: Charge coupled device, CMOS active-pixel sensor and MOS capacitor with a source
The operation principle of charge coupled devices, CMOS active pixel sensor for digital camera applications. The effect of adding a source to the MOS capacitor.

Week 3: Classical MOSFET I-V characteristics
Derivation of the classical MOSFET equations and the subthreshold characteristics.

Week 4: Mobility degradation and carrier velocity saturation
Correction to the classical pinchoff model by including the effect of mobility degradation and carrier velocity saturation.

Week 5: CMOS device scaling and short channel MOSFET
The effect of transistor scaling, short channel effects and the problems of small transistor design.

Week 6: Non-traditional nano-CMOS transistors
Introduction to the state-of-the-art transistors structure including SOI technology, FinFET, multi-gate MOSFET, tunnelling transistor and transistors based on 2-D materials.

Week 7: Final Exam

Meet your instructors

Mansun Chan
Chair Professor, Department of Electronic and Computer Engineering
The Hong Kong University of Science and Technology

Pursue a Verified Certificate to highlight the knowledge and skills you gain $60.00

View a PDF of a sample edX certificate
  • Official and Verified

    Receive an instructor-signed certificate with the institution's logo to verify your achievement and increase your job prospects

  • Easily Shareable

    Add the certificate to your CV or resume, or post it directly on LinkedIn

  • Proven Motivator

    Give yourself an additional incentive to complete the course

  • Support our Mission

    EdX, a non-profit, relies on verified certificates to help fund free education for everyone globally