Introduction to Probability - The Science of Uncertainty

Provided by Massachusetts Institute of Technology (MITx)
$300 USD
for a certificate
(or study for free)
See Prerequisites

An introduction to probabilistic models, including random processes and the basic elements of statistical inference.

MicroMasters® ProgramStatistics and Data Science
Course Format:Instructor-Led
Start Date:May 20, 2019

What you will learn

  • The basic structure and elements of probabilistic models
  • Random variables, their distributions, means, and variances
  • Probabilistic calculations
  • Inference methods
  • Laws of large numbers and their applications
  • Random processes


The world is full of uncertainty: accidents, storms, unruly financial markets, noisy communications. The world is also full of data. Probabilistic modeling and the related field of statistical inference are the keys to analyzing data and making scientifically sound predictions.

Probabilistic models use the language of mathematics. But instead of relying on the traditional "theorem - proof" format, we develop the material in an intuitive -- but still rigorous and mathematically precise -- manner. Furthermore, while the applications are multiple and evident, we emphasize the basic concepts and methodologies that are universally applicable.

The course covers all of the basic probability concepts, including:

  • multiple discrete or continuous random variables, expectations, and conditional distributions
  • laws of large numbers
  • the main tools of Bayesian inference methods
  • an introduction to random processes (Poisson processes and Markov chains)

The contents of this course are essentially the same as those of the corresponding MIT class (Probabilistic Systems Analysis and Applied Probability) -- a course that has been offered and continuously refined over more than 50 years. It is a challenging class, but it will enable you to apply the tools of probability theory to real-world applications or your research.

Before you start

College-level calculus (single-variable and multivariable). Although this is not a mathematics course, it does rely on the language and some tools from mathematics. It requires a level of comfort with mathematical reasoning, familiarity with sequences, limits, infinite series, the chain rule, as well as the ability to work with ordinary or multiple integrals.
  • Instructor-Led: course contains assignments and exams that have specific due dates, and you complete the course within a defined time period.
  • Course ends: Jan 17, 2019

Learner Testimonials

“This is by far the best probability & statistics course available--online or in the classroom.”

"You won’t find another intro to probability with greater depth and breadth."

"This is a great course for those serious about forming a solid foundation in probability."

"[This course] has created a love for probabilistic models, that, I guess, truly govern everything around us."

"This should be in top 10 MOOCs of all time."

Frequently Asked Questions

How is this class related to 6.041x?
The material covered, and the resources (videos, etc.) are largely the same, but homeworks and exams contain revised and new problems.

What textbook do I need for the course?
None - there is no required textbook. The class follows closely the text Introduction to Probability, 2nd edition, by Bertsekas and Tsitsiklis, Athena Scientific, 2008. (See the publisher's website or for more information.) However, while this textbook is recommended as supplemental reading, the materials provided by this course are self-contained.

What is the format of the class?
The course material is organized along units, each unit containing between one and three lecture sequences. (For those who purchase the textbook, each unit corresponds to a chapter.) Each lecture sequence consists of short video clips, interwoven with short problems to test your understanding. Each unit also contains a wealth of supplementary material, including videos that go through the solutions to various problems.

How much do I need to work for this class?
This is an ambitious class in that it covers a lot of material in substantial depth. In addition, MIT considers that the best way to master the subject is by actually solving on your own a fair number of problems. MIT students who take the corresponding residential class typically report an average of 11-12 hours spent each week, including lectures, recitations, readings, homework, and exams.
For more information, please visit

Who can take this course?

Unfortunately, learners from one or more of the following countries or regions will not be able to register for this course: Iran, Cuba and the Crimea region of Ukraine. While edX has sought licenses from the U.S. Office of Foreign Assets Control (OFAC) to offer our courses to learners in these countries and regions, the licenses we have received are not broad enough to allow us to offer this course in all locations. EdX truly regrets that U.S. sanctions prevent us from offering all of our courses to everyone, no matter where they live.

Also in Data Science at edX


Drive your career forward with university-backed credit programs and verified certificates


Study and demonstrate knowledge on your schedule


Try a course before you pay


Learn with university partners and peers from around the world