• Length:
    9 Weeks
  • Effort:
    7–10 hours per week
  • Price:

    FREE
    Add a Verified Certificate for $50 USD

  • Institution
  • Subject:
  • Level:
    Introductory
  • Language:
    English
  • Video Transcript:
    English

Prerequisites

The course is designed to build on a first course on quantum mechanics at the junior or senior college level, so students should have at least that background. The material here is specifically matched to follow on from the Stanford Online EEX0001A "Quantum Mechanics for Scientists and Engineers" class, and all the material from that class is provided as background in the online course materials here. No additional background beyond that class is presumed here.

About this course

Skip About this course

This course covers key topics in the use of quantum mechanics in many modern applications in science and technology, introduces core advanced concepts such as spin, identical particles, the quantum mechanics of light, the basics of quantum information, and the interpretation of quantum mechanics, and covers the major ways in which quantum mechanics is written and used in modern practice. It follows on directly from the EEX0001A "Quantum Mechanics for Scientists and Engineers" course, and is also accessible to others who have studied some quantum mechanics at the equivalent of a first junior or senior college-level physics quantum mechanics course. All of the material for the EEX0001A course is also provided as a resource. The course should prepare the student well to understand quantum mechanics as it is used in a wide range of current applications and areas and provide a solid grounding for deeper studies of specific more advanced topics.

What you'll learn

Skip What you'll learn
  • Core advanced concepts such as:
    • Spin
    • Identical particles
    • Quantum mechanics of light
    • Basics of quantum information
    • Interpretation of quantum mechanics
  • The major ways in which quantum mechanics is written and used in modern practice

Quantum mechanics in crystals

Crystal structures, the Bloch theorem that simplifies quantum mechanics in crystals, and other useful concepts for understanding semiconductor devices, such as density of states, effective mass, quantum confinement in nanostructures, and important example problems like optical absorption in semiconductors, a key process behind all optoelectronics.

Methods for one-dimensional problems

How to understand and calculate tunneling current. The transfer matrix technique, a very simple and effective technique for calculating quantum mechanical waves and states.

Spin and identical particles

The purely quantum mechanical idea of spin, and how to represent and visualize it. The general ideas of identical particles in quantum mechanics, including fermions and bosons, their properties and the states of multiple identical particles.

Quantum mechanics of light

Representing light quantum mechanically, including the concept of photons, and introducing the ideas of annihilation and creation operators.

Interaction of different kinds of particles

Describing interactions and processes using annihilation and creation operators for fermions and bosons, including the important examples of stimulated and spontaneous emission that correctly explain all light emitters, from lasers to light bulbs.

Mixed states and the density matrix

Introducing the idea of mixed states to describe how quantum mechanical systems interact with the rest of the complex world around us, and the notation and use of the density matrix to describe and manipulate these.

Quantum measurement and quantum information

Introducing the no-cloning theorem, quantum cryptography, quantum entanglement and the basic ideas of quantum computing and teleportation, and returning to the idea of measurement in quantum mechanics, including the surprising results of Bell’s inequalities.

Interpretation of quantum mechanics

A brief introduction to some of the different approaches to the difficult problem of understanding what quantum mechanics really means!

Meet your instructors

David Miller
W. M. Keck Foundation Professor of Electrical Engineering and, by Courtesy, Professor of Applied Physics
Stanford University

Pursue a Verified Certificate to highlight the knowledge and skills you gain $50.00

View a PDF of a sample edX certificate
  • Official and Verified

    Receive an instructor-signed certificate with the institution's logo to verify your achievement and increase your job prospects

  • Easily Shareable

    Add the certificate to your CV or resume, or post it directly on LinkedIn

  • Proven Motivator

    Give yourself an additional incentive to complete the course

  • Support our Mission

    EdX, a non-profit, relies on verified certificates to help fund free education for everyone globally

Frequently asked questions

Do I need to buy a textbook?

You do not need to buy a textbook; the course is self-contained. My book “Quantum Mechanics for Scientists and Engineers” (Cambridge, 2008) is an optional additional resource for the course. It follows essentially the same syllabus, has additional problems and exercises, allows you to go into greater depth on some ideas, and also contains many additional topics for further study.

How much of a time commitment will this course be?

You should expect this course to require 7 – 10 hours of work per week.

Who can take this course?

Unfortunately, learners from one or more of the following countries or regions will not be able to register for this course: Iran, Cuba and the Crimea region of Ukraine. While edX has sought licenses from the U.S. Office of Foreign Assets Control (OFAC) to offer our courses to learners in these countries and regions, the licenses we have received are not broad enough to allow us to offer this course in all locations. EdX truly regrets that U.S. sanctions prevent us from offering all of our courses to everyone, no matter where they live.